Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2013.07.038
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2007. "From coal to biomass gasification: Comparison of thermodynamic efficiency," Energy, Elsevier, vol. 32(7), pages 1248-1259.
- Boyano, A. & Blanco-Marigorta, A.M. & Morosuk, T. & Tsatsaronis, G., 2011. "Exergoenvironmental analysis of a steam methane reforming process for hydrogen production," Energy, Elsevier, vol. 36(4), pages 2202-2214.
- Bhattacharya, Abhishek & Manna, Dulal & Paul, Bireswar & Datta, Amitava, 2011. "Biomass integrated gasification combined cycle power generation with supplementary biomass firing: Energy and exergy based performance analysis," Energy, Elsevier, vol. 36(5), pages 2599-2610.
- Cocco, Daniele & Deiana, Paolo & Cau, Giorgio, 2006. "Performance evaluation of small size externally fired gas turbine (EFGT) power plants integrated with direct biomass dryers," Energy, Elsevier, vol. 31(10), pages 1459-1471.
- Jarungthammachote, S. & Dutta, A., 2007. "Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier," Energy, Elsevier, vol. 32(9), pages 1660-1669.
- Morosuk, T. & Tsatsaronis, G., 2011. "Comparative evaluation of LNG – based cogeneration systems using advanced exergetic analysis," Energy, Elsevier, vol. 36(6), pages 3771-3778.
- Ruiz, J.A. & Juárez, M.C. & Morales, M.P. & Muñoz, P. & Mendívil, M.A., 2013. "Biomass gasification for electricity generation: Review of current technology barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 174-183.
- Ligang Wang & Yongping Yang & Tatiana Morosuk & George Tsatsaronis, 2012. "Advanced Thermodynamic Analysis and Evaluation of a Supercritical Power Plant," Energies, MDPI, vol. 5(6), pages 1-14, June.
- Morosuk, T. & Tsatsaronis, G., 2009. "Advanced exergetic evaluation of refrigeration machines using different working fluids," Energy, Elsevier, vol. 34(12), pages 2248-2258.
- Datta, Amitava & Ganguly, Ranjan & Sarkar, Luna, 2010. "Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation," Energy, Elsevier, vol. 35(1), pages 341-350.
- Rodrigues, Monica & Walter, Arnaldo & Faaij, André, 2003. "Co-firing of natural gas and Biomass gas in biomass integrated gasification/combined cycle systems," Energy, Elsevier, vol. 28(11), pages 1115-1131.
- Pereira, Emanuele Graciosa & da Silva, Jadir Nogueira & de Oliveira, Jofran L. & Machado, Cássio S., 2012. "Sustainable energy: A review of gasification technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4753-4762.
- Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Carassai, Anna, 2012. "Conventional and advanced exergetic analyses applied to a combined cycle power plant," Energy, Elsevier, vol. 41(1), pages 146-152.
- Kelly, S. & Tsatsaronis, G. & Morosuk, T., 2009. "Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts," Energy, Elsevier, vol. 34(3), pages 384-391.
- Morosuk, Tatiana & Tsatsaronis, George, 2008. "A new approach to the exergy analysis of absorption refrigeration machines," Energy, Elsevier, vol. 33(6), pages 890-907.
- Gnanapragasam, Nirmal V. & Reddy, Bale V. & Rosen, Marc A., 2009. "Optimum conditions for a natural gas combined cycle power generation system based on available oxygen when using biomass as supplementary fuel," Energy, Elsevier, vol. 34(6), pages 816-826.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
- Keçebaş, Ali & Gökgedik, Harun, 2015. "Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis," Energy, Elsevier, vol. 88(C), pages 746-755.
- Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
- Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
- Şöhret, Yasin & Açıkkalp, Emin & Hepbasli, Arif & Karakoc, T. Hikmet, 2015. "Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts," Energy, Elsevier, vol. 90(P2), pages 1219-1228.
- Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
- Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
- Fallah, M. & Siyahi, H. & Ghiasi, R. Akbarpour & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2016. "Comparison of different gas turbine cycles and advanced exergy analysis of the most effective," Energy, Elsevier, vol. 116(P1), pages 701-715.
- Saeed Soltani & Hassan Athari & Marc A. Rosen & Seyed Mohammad Seyed Mahmoudi & Tatiana Morosuk, 2015. "Thermodynamic Analyses of Biomass Gasification Integrated Externally Fired, Post-Firing and Dual-Fuel Combined Cycles," Sustainability, MDPI, vol. 7(2), pages 1-15, January.
- Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Advanced exergy analysis of an air conditioning system incorporating thermal energy storage," Energy, Elsevier, vol. 77(C), pages 945-952.
- Morosuk, Tatiana & Tsatsaronis, George, 2019. "Advanced exergy-based methods used to understand and improve energy-conversion systems," Energy, Elsevier, vol. 169(C), pages 238-246.
- Yamankaradeniz, Nurettin, 2016. "Thermodynamic performance assessments of a district heating system with geothermal by using advanced exergy analysis," Renewable Energy, Elsevier, vol. 85(C), pages 965-972.
- Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
- Adrian Bejan & George Tsatsaronis, 2021. "Purpose in Thermodynamics," Energies, MDPI, vol. 14(2), pages 1-25, January.
- Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Paitazoglou, Christopher, 2012. "Environmental evaluation of a power plant using conventional and advanced exergy-based methods," Energy, Elsevier, vol. 45(1), pages 23-30.
- Balli, Ozgur & Aygun, Hakan & Turan, Onder, 2022. "Enhanced dynamic exergy analysis of a micro-jet (μ-jet) engine at various modes," Energy, Elsevier, vol. 239(PA).
- Caglayan, Hasan & Caliskan, Hakan, 2021. "Advanced exergy analyses and optimization of a cogeneration system for ceramic industry by considering endogenous, exogenous, avoidable and unavoidable exergies under different environmental condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Bai, Tao & Yu, Jianlin & Yan, Gang, 2016. "Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector," Energy, Elsevier, vol. 113(C), pages 385-398.
- Mortazavi, Arsham & Ameri, Mehran, 2018. "Conventional and advanced exergy analysis of solar flat plate air collectors," Energy, Elsevier, vol. 142(C), pages 277-288.
- Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:59:y:2013:i:c:p:775-780. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/energy/v59y2013icp775-780.html