IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i9p1660-1669.html
   My bibliography  Save this article

Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier

Author

Listed:
  • Jarungthammachote, S.
  • Dutta, A.

Abstract

The management of municipal solid waste (MSW) and the current status of world energy resources crisis are important problems. Gasification is a kind of waste-to- energy conversion scheme that offers the most attractive solution to both waste disposal and energy problems. In this study, the thermodynamic equilibrium model based on equilibrium constant for predicting the composition of producer gas in a downdraft waste gasifier was developed. To enhance the performance of the model, further modification was made by multiplying the equilibrium constants with coefficients. The modified model was validated with the data reported by different researchers. MSW in Thailand was then used to simulate and to study the effects of moisture content (MC) of the waste on the gasifier's performance. The results showed that the mole fraction of H2 gradually increases; CO decreases; CH4, which has a very low percentage in the producer gas increases; N2 slightly decreases; and CO2 increases with increasing MC. The reaction temperature, the calorific value, and the second law efficiency, decrease when MC increases.

Suggested Citation

  • Jarungthammachote, S. & Dutta, A., 2007. "Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier," Energy, Elsevier, vol. 32(9), pages 1660-1669.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:9:p:1660-1669
    DOI: 10.1016/j.energy.2007.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544207000199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2007.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruggiero, M. & Manfrida, G., 1999. "An equilibrium model for biomass gasification processes," Renewable Energy, Elsevier, vol. 16(1), pages 1106-1109.
    2. Prins, M.J. & Ptasinski, K.J., 2005. "Energy and exergy analyses of the oxidation and gasification of carbon," Energy, Elsevier, vol. 30(7), pages 982-1002.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pellegrini, Luiz Felipe & de Oliveira, Silvio, 2007. "Exergy analysis of sugarcane bagasse gasification," Energy, Elsevier, vol. 32(4), pages 314-327.
    2. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    3. Cullen, Jonathan M. & Allwood, Julian M., 2010. "Theoretical efficiency limits for energy conversion devices," Energy, Elsevier, vol. 35(5), pages 2059-2069.
    4. Toghyani, Mahboubeh & Rahimi, Amir, 2015. "Exergy analysis of an industrial unit of catalyst regeneration based on the results of modeling and simulation," Energy, Elsevier, vol. 91(C), pages 1049-1056.
    5. Saulov, Dmitry N. & Plumb, Ovid A. & Klimenko, A.Y., 2010. "Flame propagation in a gasification channel," Energy, Elsevier, vol. 35(3), pages 1264-1273.
    6. Granada, E. & Eguía, P. & Vilan, J.A. & Comesaña, J.A. & Comesaña, R., 2012. "FTIR quantitative analysis technique for gases. Application in a biomass thermochemical process," Renewable Energy, Elsevier, vol. 41(C), pages 416-421.
    7. Patel, Vimal R. & Patel, Darshil & Varia, Nandan S. & Patel, Rajesh N., 2017. "Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier," Energy, Elsevier, vol. 119(C), pages 834-844.
    8. Zhang, Jianyun & Zhou, Zhe & Ma, Linwei & Li, Zheng & Ni, Weidou, 2013. "Efficiency of wet feed IGCC (integrated gasification combined cycle) systems with coal–water slurry preheating vaporization technology," Energy, Elsevier, vol. 51(C), pages 137-145.
    9. La Villetta, M. & Costa, M. & Massarotti, N., 2017. "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 71-88.
    10. Karamarkovic, Rade & Karamarkovic, Vladan, 2010. "Energy and exergy analysis of biomass gasification at different temperatures," Energy, Elsevier, vol. 35(2), pages 537-549.
    11. Eftekhari, Ali Akbar & Van Der Kooi, Hedzer & Bruining, Hans, 2012. "Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide," Energy, Elsevier, vol. 45(1), pages 729-745.
    12. Roy, Prokash C. & Datta, Amitava & Chakraborty, Niladri, 2010. "Assessment of cow dung as a supplementary fuel in a downdraft biomass gasifier," Renewable Energy, Elsevier, vol. 35(2), pages 379-386.
    13. Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
    14. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer–Tropsch synthesis," Energy, Elsevier, vol. 35(6), pages 2557-2579.
    15. N. Florin & A. Harris, 2007. "Hydrogen production from biomass," Environment Systems and Decisions, Springer, vol. 27(1), pages 207-215, March.
    16. Pio, D.T. & Tarelho, L.A.C., 2020. "Empirical and chemical equilibrium modelling for prediction of biomass gasification products in bubbling fluidized beds," Energy, Elsevier, vol. 202(C).
    17. Millinger, M. & Ponitka, J. & Arendt, O. & Thrän, D., 2017. "Competitiveness of advanced and conventional biofuels: Results from least-cost modelling of biofuel competition in Germany," Energy Policy, Elsevier, vol. 107(C), pages 394-402.
    18. Ahmed, Tigabwa Y. & Ahmad, Murni M. & Yusup, Suzana & Inayat, Abrar & Khan, Zakir, 2012. "Mathematical and computational approaches for design of biomass gasification for hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2304-2315.
    19. Upadhyay, Darshit S. & Panchal, Krunal R. & Sakhiya, Anil Kumar V & Patel, Rajesh N., 2020. "Air-Steam gasification of lignite in a fixed bed gasifier: Influence of steam to lignite ratio on performance of downdraft gasifier," Energy, Elsevier, vol. 211(C).
    20. Silva, Isabelly P. & Lima, Rafael M.A. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2019. "Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:9:p:1660-1669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.