IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v184y2016icp19-25.html
   My bibliography  Save this article

Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A

Author

Listed:
  • Sun, Zhili
  • Liang, Youcai
  • Liu, Shengchun
  • Ji, Weichuan
  • Zang, Runqing
  • Liang, Rongzhen
  • Guo, Zhikai

Abstract

This study presents a comparative analysis of thermodynamic performance of cascade refrigeration systems (CRSs) for refrigerant couples R41/R404A and R23/R404A to discover whether R41 is a suitable substitute for R23. The discharge temperature, input power of the compressor, coefficient of performance (COP), exergy loss (X) and exergy efficiency (η) are chosen as the objective functions. The operating parameters considered in this paper include condensing temperature, evaporating temperature, superheating temperature and subcooling temperature in both high-temperature cycle (HTC) and low-temperature cycle (LTC). The results indicate that an optimum condenser temperature exists for LTC (T4opt) at which COP acquires maximum value. Under the same operation condition, the input power of R41/R404A CRS is lower than that of R23/R404A CRS, and COPopt is higher than that of R23/R404A CRS. The maximum exergy efficiency of R41/R404A and R23/R404A CRSs are 44.38% and 42.98% respectively. The theoretical analysis indicates that R41/R404A is a more potential refrigerant couple than R23/R404A in CRS.

Suggested Citation

  • Sun, Zhili & Liang, Youcai & Liu, Shengchun & Ji, Weichuan & Zang, Runqing & Liang, Rongzhen & Guo, Zhikai, 2016. "Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A," Applied Energy, Elsevier, vol. 184(C), pages 19-25.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:19-25
    DOI: 10.1016/j.apenergy.2016.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916314386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    2. Llopis, R. & Torrella, E. & Cabello, R. & Sánchez, D., 2010. "Performance evaluation of R404A and R507A refrigerant mixtures in an experimental double-stage vapour compression plant," Applied Energy, Elsevier, vol. 87(5), pages 1546-1553, May.
    3. Wang, Q. & Li, D.H. & Wang, J.P. & Sun, T.F. & Han, X.H. & Chen, G.M., 2013. "Numerical investigations on the performance of a single-stage auto-cascade refrigerator operating with two vapor–liquid separators and environmentally benign binary refrigerants," Applied Energy, Elsevier, vol. 112(C), pages 949-955.
    4. Park, Ki-Jung & Seo, Taebeom & Jung, Dongsoo, 2007. "Performance of alternative refrigerants for residential air-conditioning applications," Applied Energy, Elsevier, vol. 84(10), pages 985-991, October.
    5. Rezayan, Omid & Behbahaninia, Ali, 2011. "Thermoeconomic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems," Energy, Elsevier, vol. 36(2), pages 888-895.
    6. Llopis, Rodrigo & Sánchez, Daniel & Sanz-Kock, Carlos & Cabello, Ramón & Torrella, Enrique, 2015. "Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: Fluids and systems," Applied Energy, Elsevier, vol. 138(C), pages 133-142.
    7. Ge, Y.T. & Cropper, R., 2008. "Performance simulation of refrigerated display cabinets operating with refrigerants R22 and R404A," Applied Energy, Elsevier, vol. 85(8), pages 694-707, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jing & Gao, Guangtao & Kutlu, Cagri & Liu, Keliang & Pei, Gang & Su, Yuehong & Ji, Jie & Riffat, Saffa, 2019. "A novel approach to thermal storage of direct steam generation solar power systems through two-step heat discharge," Applied Energy, Elsevier, vol. 236(C), pages 81-100.
    2. Zhang, Zhaoli & Alelyani, Sami M. & Zhang, Nan & Zeng, Chao & Yuan, Yanping & Phelan, Patrick E., 2018. "Thermodynamic analysis of a novel sodium hydroxide-water solution absorption refrigeration, heating and power system for low-temperature heat sources," Applied Energy, Elsevier, vol. 222(C), pages 1-12.
    3. Liang, Jierong & Sun, Li & Li, Tingxun, 2018. "A novel defrosting method in gasoline vapor recovery application," Energy, Elsevier, vol. 163(C), pages 751-765.
    4. Qin, Yanbin & Li, Nanxi & Zhang, Hua & Liu, Baolin, 2021. "Energy and exergy analysis of a Linde-Hampson refrigeration system using R170, R41 and R1132a as low-GWP refrigerant blend components to replace R23," Energy, Elsevier, vol. 229(C).
    5. Min-Ju Jeon, 2022. "Experimental Analysis of the R744/R404A Cascade Refrigeration System with Internal Heat Exchanger. Part 2: Exergy Characteristics," Energies, MDPI, vol. 15(3), pages 1-20, February.
    6. Jeon, Yongseok & Kim, Sunjae & Lee, Sang Hun & Chung, Hyun Joon & Kim, Yongchan, 2020. "Seasonal energy performance characteristics of novel ejector-expansion air conditioners with low-GWP refrigerants," Applied Energy, Elsevier, vol. 278(C).
    7. Hao, Xinyue & Wang, Lin & Wang, Zhanwei & Tan, Yingying & Yan, Xiaona, 2018. "Hybrid auto-cascade refrigeration system coupled with a heat-driven ejector cooling cycle," Energy, Elsevier, vol. 161(C), pages 988-998.
    8. Sun, Zhili & Wang, Qifan & Xie, Zhiyuan & Liu, Shengchun & Su, Dandan & Cui, Qi, 2019. "Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system," Energy, Elsevier, vol. 170(C), pages 1170-1180.
    9. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Guo, Zhikai & Chen, Jiangping, 2019. "Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems," Applied Energy, Elsevier, vol. 239(C), pages 1142-1153.
    10. Huang, Tao & Bacher, Peder & Møller, Jan Kloppenborg & D’Ettorre, Francesco & Markussen, Wiebke Brix, 2023. "A step towards digital operations—A novel grey-box approach for modelling the heat dynamics of ultra-low temperature freezing chambers," Applied Energy, Elsevier, vol. 349(C).
    11. Min-Ju Jeon, 2021. "Experimental Analysis of the R744/R404A Cascade Refrigeration System with Internal Heat Exchanger. Part 1: Coefficient of Performance Characteristics," Energies, MDPI, vol. 14(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Megdouli, K. & Ejemni, N. & Nahdi, E. & Mhimid, A. & Kairouani, L., 2017. "Thermodynamic analysis of a novel ejector expansion transcritical CO2/N2O cascade refrigeration (NEETCR) system for cooling applications at low temperatures," Energy, Elsevier, vol. 128(C), pages 586-600.
    2. Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
    3. Qin, Yanbin & Li, Nanxi & Zhang, Hua & Liu, Baolin, 2021. "Energy and exergy analysis of a Linde-Hampson refrigeration system using R170, R41 and R1132a as low-GWP refrigerant blend components to replace R23," Energy, Elsevier, vol. 229(C).
    4. Purohit, Nilesh & Sharma, Vishaldeep & Sawalha, Samer & Fricke, Brian & Llopis, Rodrigo & Dasgupta, Mani Sankar, 2018. "Integrated supermarket refrigeration for very high ambient temperature," Energy, Elsevier, vol. 165(PA), pages 572-590.
    5. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Guo, Zhikai & Chen, Jiangping, 2019. "Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems," Applied Energy, Elsevier, vol. 239(C), pages 1142-1153.
    6. Wang, Q. & Li, D.H. & Wang, J.P. & Sun, T.F. & Han, X.H. & Chen, G.M., 2013. "Numerical investigations on the performance of a single-stage auto-cascade refrigerator operating with two vapor–liquid separators and environmentally benign binary refrigerants," Applied Energy, Elsevier, vol. 112(C), pages 949-955.
    7. Comakli, K. & Simsek, F. & Comakli, O. & Sahin, B., 2009. "Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method," Applied Energy, Elsevier, vol. 86(11), pages 2451-2458, November.
    8. Qin, Yanbin & Li, Nanxi & Zhang, Hua & Liu, Baolin, 2022. "Study on the performance of an energy-efficient three-stage auto-cascade refrigeration system enhanced with a pressure regulator," Energy, Elsevier, vol. 258(C).
    9. Sun, Zhili & Wang, Qifan & Xie, Zhiyuan & Liu, Shengchun & Su, Dandan & Cui, Qi, 2019. "Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system," Energy, Elsevier, vol. 170(C), pages 1170-1180.
    10. Tieyu Gao & Changwei Liu, 2017. "Off-Design Performances of Subcritical and Supercritical Organic Rankine Cycles in Geothermal Power Systems under an Optimal Control Strategy," Energies, MDPI, vol. 10(8), pages 1-25, August.
    11. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
    12. Sarkar, Jahar, 2015. "Analyses and optimization of a supercritical N2O Rankine cycle for low-grade heat conversion," Energy, Elsevier, vol. 81(C), pages 344-351.
    13. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    14. Adams, Benjamin M. & Kuehn, Thomas H. & Bielicki, Jeffrey M. & Randolph, Jimmy B. & Saar, Martin O., 2015. "A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions," Applied Energy, Elsevier, vol. 140(C), pages 365-377.
    15. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    16. Moein Shamoushaki & Mehdi Aliehyaei & Farhad Taghizadeh-Hesary, 2021. "Energy, Exergy, Exergoeconomic, and Exergoenvironmental Assessment of Flash-Binary Geothermal Combined Cooling, Heating and Power Cycle," Energies, MDPI, vol. 14(15), pages 1-24, July.
    17. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    18. Park, Ki-Jung & Shim, Yun-Bo & Jung, Dongsoo, 2008. "Performance of R433A for replacing HCFC22 used in residential air-conditioners and heat pumps," Applied Energy, Elsevier, vol. 85(9), pages 896-900, September.
    19. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    20. Dong, Shengming & Zhang, Yufeng & He, Zhonglu & Deng, Na & Yu, Xiaohui & Yao, Sheng, 2018. "Investigation of Support Vector Machine and Back Propagation Artificial Neural Network for performance prediction of the organic Rankine cycle system," Energy, Elsevier, vol. 144(C), pages 851-864.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:19-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.