IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225009831.html
   My bibliography  Save this article

System modifications with a nonflammable eco-friendly mixture for ultra-low-temperature refrigeration: Energy, advanced exergy, life cycle analysis

Author

Listed:
  • Yang, Kaiyin
  • Sun, Tianyu
  • Liu, Yilun
  • Wang, Qin
  • Xue, Ziqian
  • Yang, Hongxing
  • Luo, Jielin

Abstract

Being widely used in various fields, ultra-low-temperature (ULT) refrigeration plays an important role in society development. Refrigeration systems using zeotropic mixtures are favored in existing studies, but efficient options suffer drawbacks of flammability risk, limiting broader applications. In this work, a novel ternary mixture of R1132a, CO2 and R1336mzz(E) is proposed, with the flammability predicted and conditionally avoided. Configuration modifications are customized for this mixture for efficiency enhancement at refrigerating temperature down to −80 °C. This novel system exhibits maximum COP improvements of 17.7 % and 6.0 %, versus a basic auto-cascade system and a complex cascade system respectively. Thus, an annual performance factor improvement of up to 5.4 % is achieved globally, mainly attributed to low throttling and recuperative irreversibilities. Advanced exergy analysis indicates that this novel system has the highest improvement potential, with an avoidable loss ratio of 66.9 %. Meanwhile, this novel system can reduce life cycle cost worldwide, with a maximum of 5.51 % in Singapore. A superiority in life cycle climate performance is also achieved, with emission reductions of up to 10.6 %. The results indicate simple-structured, safe, efficient, high-potential, cost-effective and low-carbon-emission solutions for ULT technology, contributing to energy conservation and emission reduction worldwide, and finally promoting carbon neutrality.

Suggested Citation

  • Yang, Kaiyin & Sun, Tianyu & Liu, Yilun & Wang, Qin & Xue, Ziqian & Yang, Hongxing & Luo, Jielin, 2025. "System modifications with a nonflammable eco-friendly mixture for ultra-low-temperature refrigeration: Energy, advanced exergy, life cycle analysis," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225009831
    DOI: 10.1016/j.energy.2025.135341
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225009831
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    2. Liao, Gaoliang & E, Jiaqiang & Zhang, Feng & Chen, Jingwei & Leng, Erwei, 2020. "Advanced exergy analysis for Organic Rankine Cycle-based layout to recover waste heat of flue gas," Applied Energy, Elsevier, vol. 266(C).
    3. Chen, Longxiang & Liu, Xi & Ye, Kai & Xie, Meina & Lan, Wenchao, 2023. "Thermodynamic and economic analysis of an integration system of multi-effect desalination (MED) with ice storage based on a heat pump," Energy, Elsevier, vol. 283(C).
    4. Zhao, Zhen & Luo, Jielin & Zou, Dexin & Yang, Kaiyin & Wang, Qin & Chen, Guangming, 2023. "Experimental investigation on the inhibition of flame retardants on the flammability of R1234ze(E)," Energy, Elsevier, vol. 263(PE).
    5. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    6. Yang, Jingye & Ye, Zhenhong & Yu, Binbin & Ouyang, Hongsheng & Chen, Jiangping, 2019. "Simultaneous experimental comparison of low-GWP refrigerants as drop-in replacements to R245fa for Organic Rankine cycle application: R1234ze(Z), R1233zd(E), and R1336mzz(E)," Energy, Elsevier, vol. 173(C), pages 721-731.
    7. Asgari, Sahar & Noorpoor, A.R. & Boyaghchi, Fateme Ahmadi, 2017. "Parametric assessment and multi-objective optimization of an internal auto-cascade refrigeration cycle based on advanced exergy and exergoeconomic concepts," Energy, Elsevier, vol. 125(C), pages 576-590.
    8. Karacayli, Ibrahim & Altay, Lutfiye & Hepbasli, Arif, 2024. "A parametric study on energy, exergy and exergoeconomic assessments of a modified auto-cascade refrigeration cycle supported by a dual evaporator refrigerator," Energy, Elsevier, vol. 291(C).
    9. Ran, Peng & Ou, YiFan & Zhang, ChunYu & Chen, YuTong, 2024. "Energy, exergy, economic, and life cycle environmental analysis of a novel biogas-fueled solid oxide fuel cell hybrid power generation system assisted with solar thermal energy storage unit," Applied Energy, Elsevier, vol. 358(C).
    10. Wang, Q. & Li, D.H. & Wang, J.P. & Sun, T.F. & Han, X.H. & Chen, G.M., 2013. "Numerical investigations on the performance of a single-stage auto-cascade refrigerator operating with two vapor–liquid separators and environmentally benign binary refrigerants," Applied Energy, Elsevier, vol. 112(C), pages 949-955.
    11. Sun, Zhili & Liang, Youcai & Liu, Shengchun & Ji, Weichuan & Zang, Runqing & Liang, Rongzhen & Guo, Zhikai, 2016. "Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A," Applied Energy, Elsevier, vol. 184(C), pages 19-25.
    12. Yu, Binbin & Long, Junan & Zhang, Yingjing & Ouyang, Hongsheng & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2024. "Life cycle climate performance evaluation (LCCP) of electric vehicle heat pumps using low-GWP refrigerants towards China's carbon neutrality," Applied Energy, Elsevier, vol. 353(PA).
    13. Mark O. McLinden & J. Steven Brown & Riccardo Brignoli & Andrei F. Kazakov & Piotr A. Domanski, 2017. "Limited options for low-global-warming-potential refrigerants," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    14. Li, Yinlong & Liu, Guoqiang & Chen, Qi & Yan, Gang, 2023. "Progress of auto-cascade refrigeration systems performance improvement: Composition separation, shift and regulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    15. Bai, Tao & Yu, Jianlin & Yan, Gang, 2016. "Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector," Energy, Elsevier, vol. 113(C), pages 385-398.
    16. Bai, Tao & Yan, Gang & Yu, Jianlin, 2022. "Influence of internal heat exchanger position on the performance of ejector-enhanced auto-cascade refrigeration cycle for the low-temperature freezer," Energy, Elsevier, vol. 238(PC).
    17. Kumma, Nagarjuna & Kruthiventi, S.S Harish, 2024. "Current status of refrigerants used in domestic applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. Qin, Yanbin & Li, Nanxi & Zhang, Hua & Liu, Baolin, 2021. "Energy and exergy analysis of a Linde-Hampson refrigeration system using R170, R41 and R1132a as low-GWP refrigerant blend components to replace R23," Energy, Elsevier, vol. 229(C).
    19. Qin, Yanbin & Li, Nanxi & Zhang, Hua & Liu, Baolin, 2022. "Study on the performance of an energy-efficient three-stage auto-cascade refrigeration system enhanced with a pressure regulator," Energy, Elsevier, vol. 258(C).
    20. Liu, Lintong & Zhai, Rongrong & Hu, Yangdi, 2023. "Multi-objective optimization with advanced exergy analysis of a wind-solar‑hydrogen multi-energy supply system," Applied Energy, Elsevier, vol. 348(C).
    21. Chen, Jianyong & Havtun, Hans & Palm, Björn, 2015. "Conventional and advanced exergy analysis of an ejector refrigeration system," Applied Energy, Elsevier, vol. 144(C), pages 139-151.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Sen & Li, Xiuzhen & Song, Ziyun & Tan, Yingying & Wang, Zhanwei & Wang, Lin, 2025. "Thermodynamic performance analysis of a grade compression auto-cascade refrigeration cycle with multi-dephlegmation processes," Energy, Elsevier, vol. 325(C).
    2. Li, Yinlong & Yan, Gang & Jing, Dongliang & Liu, Guoqiang & Llopis, Rodrigo, 2025. "A novel online measurement method for compositions and energy performance of an auto-cascade refrigeration system," Energy, Elsevier, vol. 318(C).
    3. Li, Yinlong & Liu, Guoqiang & Chen, Qi & Yan, Gang, 2023. "Progress of auto-cascade refrigeration systems performance improvement: Composition separation, shift and regulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    4. Zhao, Hongxia & Yuan, Tianpeng & Gao, Jia & Wang, Xinli & Yan, Jia, 2019. "Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290," Energy, Elsevier, vol. 166(C), pages 845-861.
    5. Li, Yinlong & Dong, Peiwen & Liu, Guoqiang & Yan, Gang, 2024. "Thermodynamic performance analysis of the fractionation and flash separation auto-cascade refrigeration cycle using low GWP refrigerant," Energy, Elsevier, vol. 308(C).
    6. Qin, Yanbin & Zhang, Shaojie & Zhang, Hua & Tan, Yuxuan & Zhou, Guozhong & Liu, Baolin, 2025. "Experimental investigation on the performance of a −120 °C ultralow temperature refrigeration system based on a three-stage auto-cascade cycle," Energy, Elsevier, vol. 320(C).
    7. Li, Yinlong & Yan, Gang & Yang, Yuqing & Dong, Peiwen & Liu, Guoqiang, 2024. "Thermodynamic analysis of new configurations of auto-cascade refrigeration cycles integrating the vortex tube," Energy, Elsevier, vol. 308(C).
    8. Ma, Xudong & Du, Yanjun & Wu, Yuting & Lei, Biao, 2024. "Performance improvement of air-source autocascade high-temperature heat pumps using advanced exergy analysis," Energy, Elsevier, vol. 307(C).
    9. Feng, Xu & Wu, Yuting & Du, Yanjun & Qi, Di, 2024. "Optimization and performance improvement of ultra-low temperature cascade refrigeration system based on the isentropic efficiency curve of single-screw compressor," Energy, Elsevier, vol. 298(C).
    10. Yang, Kaiyin & Zhang, Yanling & Zhang, Zhuohang & Wang, Qin & Ye, Gongran & Xue, Ziqian & Luo, Jielin & Yang, Hongxing, 2025. "Conceptualization and investigations on a cooling-heating co-generation and step-utilization heat pump for efficient direct air capture," Applied Energy, Elsevier, vol. 388(C).
    11. Feng, Chunyu & Guo, Cong & Chen, Junbin & Tan, Sicong & Jiang, Yuyan, 2024. "Thermodynamic analysis of a dual-pressure evaporation high-temperature heat pump with low GWP zeotropic mixtures for steam generation," Energy, Elsevier, vol. 294(C).
    12. Giménez-Prades, P. & Navarro-Esbrí, J. & Arpagaus, C. & Fernández-Moreno, A. & Mota-Babiloni, A., 2022. "Novel molecules as working fluids for refrigeration, heat pump and organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Liu, Ye & Yu, Jianlin, 2018. "Performance analysis of an advanced ejector-expansion autocascade refrigeration cycle," Energy, Elsevier, vol. 165(PB), pages 859-867.
    14. Sun, Zhili & Wang, Qifan & Xie, Zhiyuan & Liu, Shengchun & Su, Dandan & Cui, Qi, 2019. "Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system," Energy, Elsevier, vol. 170(C), pages 1170-1180.
    15. Ustaoglu, Abid, 2020. "Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach," Energy, Elsevier, vol. 201(C).
    16. Tan, Yingying & Li, Xiuzhen & Wang, Lin & Huang, Lisheng & Xiao, Yi & Wang, Zhanwei & Li, Shaoqiang, 2023. "Thermodynamic performance of the fractionated auto-cascade refrigeration cycle coupled with two-phase ejector using R1150/R600a at −80 °C temperature level," Energy, Elsevier, vol. 281(C).
    17. Asgari, Sahar & Noorpoor, A.R. & Boyaghchi, Fateme Ahmadi, 2017. "Parametric assessment and multi-objective optimization of an internal auto-cascade refrigeration cycle based on advanced exergy and exergoeconomic concepts," Energy, Elsevier, vol. 125(C), pages 576-590.
    18. Ye, Wenlian & Liu, Yang & Zhou, Zhongyou & Hu, Lulu & Liu, Yingwen, 2025. "Performance prediction of an auto-cascade refrigeration system using multiple-algorithmic approaches," Energy, Elsevier, vol. 314(C).
    19. Liu, Chenglin & Zhao, Lei & Zhu, Shun & Shen, Yuefeng & Yu, Jianhua & Yang, Qingchun, 2023. "Advanced exergy analysis and optimization of a coal to ethylene glycol (CtEG) process," Energy, Elsevier, vol. 282(C).
    20. Hao, Xinyue & Wang, Lin & Wang, Zhanwei & Tan, Yingying & Yan, Xiaona, 2018. "Hybrid auto-cascade refrigeration system coupled with a heat-driven ejector cooling cycle," Energy, Elsevier, vol. 161(C), pages 988-998.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225009831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.