IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224010004.html
   My bibliography  Save this article

Optimization and performance improvement of ultra-low temperature cascade refrigeration system based on the isentropic efficiency curve of single-screw compressor

Author

Listed:
  • Feng, Xu
  • Wu, Yuting
  • Du, Yanjun
  • Qi, Di

Abstract

In this paper, a cascade refrigeration system equipped with a single-screw compressor (SSC-CRS) is proposed and built in order to achieve the goal of high load cooling capacity under ultra-low temperature conditions. Firstly, the isentropic efficiency curve of the single-screw compressor (SSC) is fitted through experimental method in response to the characteristics of low suction temperature and large pressure ratio of the compressor. In addition, the analysis of SSC-CRS with 28 refrigerant pairs are made to compare the coefficient of refrigeration (COP) and power consumption. On the basis of the cascade system, the paper compares the improvement of performance between two circuits with SSC: vapor injection cascade refrigeration system (SSC-ICRS) and ejector vapor injection cascade refrigeration system (SSC-EICRS). The results indicate the COP improvement rate of SSC-ICRS system is 17.39 %–41.98 % and the COP improvement rate of SSC-EICRS system is 49.46 %–68.37 % compared with SSC-CRS.

Suggested Citation

  • Feng, Xu & Wu, Yuting & Du, Yanjun & Qi, Di, 2024. "Optimization and performance improvement of ultra-low temperature cascade refrigeration system based on the isentropic efficiency curve of single-screw compressor," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010004
    DOI: 10.1016/j.energy.2024.131227
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010004
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131227?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.