IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v157y2018icp647-657.html
   My bibliography  Save this article

Experimental research on the pull-down performance of an ejector enhanced auto-cascade refrigeration system for low-temperature freezer

Author

Listed:
  • Bai, Tao
  • Yan, Gang
  • Yu, Jianlin

Abstract

This paper presents an experimental investigation on pull-down performance of an ejector enhanced auto-cascade refrigeration cycle for low-temperature freezer application. The pull-down performances of the freezer established on the ejector enhanced cycle and conventional auto-cascade refrigeration cycle were compared. Additionally, operation behaviors of the ejector and the new cycle based freezer at different mixture concentrations and throttle valve openings were investigated. The results indicated that ejector enhanced system exhibited shorter pull-down time and lower freezer air temperature after continuous operation in comparison with the conventional system. And the pull-down time was saved by 34.4% and the energy consumption of the compressor was reduced by 29.6% at the desired freezing temperature of −40 °C.The largest time average values of the pressure lift ratio and entrainment ratio reached up to 2.854 and 1.340, and the time average compression ratio of the compressor was reduced by 11.6% due to the effective pressure lifting effect of the ejector. The optimal mass fraction ratio of 30%/70% for the mixture R23/R134a was proposed with respect to the shortest pull-down time. This research may offer good guidelines for further improving the performance of the auto-cascade refrigeration system in low-temperature freezer.

Suggested Citation

  • Bai, Tao & Yan, Gang & Yu, Jianlin, 2018. "Experimental research on the pull-down performance of an ejector enhanced auto-cascade refrigeration system for low-temperature freezer," Energy, Elsevier, vol. 157(C), pages 647-657.
  • Handle: RePEc:eee:energy:v:157:y:2018:i:c:p:647-657
    DOI: 10.1016/j.energy.2018.05.205
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421831051X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Tao & Yan, Gang & Yu, Jianlin, 2015. "Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector," Energy, Elsevier, vol. 84(C), pages 325-335.
    2. Wang, Q. & Li, D.H. & Wang, J.P. & Sun, T.F. & Han, X.H. & Chen, G.M., 2013. "Numerical investigations on the performance of a single-stage auto-cascade refrigerator operating with two vapor–liquid separators and environmentally benign binary refrigerants," Applied Energy, Elsevier, vol. 112(C), pages 949-955.
    3. Bai, Tao & Yu, Jianlin & Yan, Gang, 2016. "Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector," Energy, Elsevier, vol. 113(C), pages 385-398.
    4. Chen, Jianyong & Jarall, Sad & Havtun, Hans & Palm, Björn, 2015. "A review on versatile ejector applications in refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 67-90.
    5. Jeon, Yongseok & Jung, Jongho & Kim, Dongwoo & Kim, Sunjae & Kim, Yongchan, 2017. "Effects of ejector geometries on performance of ejector-expansion R410A air conditioner considering cooling seasonal performance factor," Applied Energy, Elsevier, vol. 205(C), pages 761-768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Tao & Yan, Gang & Yu, Jianlin, 2022. "Influence of internal heat exchanger position on the performance of ejector-enhanced auto-cascade refrigeration cycle for the low-temperature freezer," Energy, Elsevier, vol. 238(PC).
    2. Gao, Yu & He, Guogeng & Cai, Dehua & Fan, Mingjing, 2020. "Performance evaluation of a modified R290 dual-evaporator refrigeration cycle using two-phase ejector as expansion device," Energy, Elsevier, vol. 212(C).
    3. Zhenzhen Liu & Jingde Jiang & Zilong Wang & Hua Zhang, 2023. "Thermodynamic Analysis of an Innovative Cold Energy Storage System for Auto-Cascade Refrigeration Applications," Energies, MDPI, vol. 16(5), pages 1-17, February.
    4. Qi Chen & Yinsong Li, 2022. "Experimental Investigation on Intermittent Operation Characteristics of Dual-Temperature Refrigeration System Using Hydrocarbon Mixture," Energies, MDPI, vol. 15(11), pages 1-19, May.
    5. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
    6. Michał Sobieraj, 2020. "Experimental Investigation of the Effect of a Recuperative Heat Exchanger and Throttles Opening on a CO 2 /Isobutane Autocascade Refrigeration System," Energies, MDPI, vol. 13(20), pages 1-15, October.
    7. Rostamzadeh, Hadi & Nourani, Pejman, 2019. "Investigating potential benefits of a salinity gradient solar pond for ejector refrigeration cycle coupled with a thermoelectric generator," Energy, Elsevier, vol. 172(C), pages 675-690.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Ye & Yu, Jianlin, 2018. "Performance analysis of an advanced ejector-expansion autocascade refrigeration cycle," Energy, Elsevier, vol. 165(PB), pages 859-867.
    2. Bai, Tao & Yu, Jianlin & Yan, Gang, 2016. "Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector," Energy, Elsevier, vol. 113(C), pages 385-398.
    3. Zhao, Hongxia & Yuan, Tianpeng & Gao, Jia & Wang, Xinli & Yan, Jia, 2019. "Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290," Energy, Elsevier, vol. 166(C), pages 845-861.
    4. Tan, Yingying & Li, Xiuzhen & Wang, Lin & Huang, Lisheng & Xiao, Yi & Wang, Zhanwei & Li, Shaoqiang, 2023. "Thermodynamic performance of the fractionated auto-cascade refrigeration cycle coupled with two-phase ejector using R1150/R600a at −80 °C temperature level," Energy, Elsevier, vol. 281(C).
    5. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    6. Yan, Gang & Bai, Tao & Yu, Jianlin, 2016. "Thermodynamic analysis on a modified ejector expansion refrigeration cycle with zeotropic mixture (R290/R600a) for freezers," Energy, Elsevier, vol. 95(C), pages 144-154.
    7. Asgari, Sahar & Noorpoor, A.R. & Boyaghchi, Fateme Ahmadi, 2017. "Parametric assessment and multi-objective optimization of an internal auto-cascade refrigeration cycle based on advanced exergy and exergoeconomic concepts," Energy, Elsevier, vol. 125(C), pages 576-590.
    8. Zou, Huiming & Yang, Tianyang & Tang, Mingsheng & Tian, Changqing & Butrymowicz, Dariusz, 2022. "Ejector optimization and performance analysis of electric vehicle CO2 heat pump with dual ejectors," Energy, Elsevier, vol. 239(PE).
    9. Sun, Zhili & Wang, Qifan & Xie, Zhiyuan & Liu, Shengchun & Su, Dandan & Cui, Qi, 2019. "Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system," Energy, Elsevier, vol. 170(C), pages 1170-1180.
    10. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    11. Min-Ju Jeon, 2022. "Experimental Analysis of the R744/R404A Cascade Refrigeration System with Internal Heat Exchanger. Part 2: Exergy Characteristics," Energies, MDPI, vol. 15(3), pages 1-20, February.
    12. Hu, Bin & Wu, Di & Wang, R.Z., 2018. "Water vapor compression and its various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 92-107.
    13. Hao, Xinyue & Wang, Lin & Wang, Zhanwei & Tan, Yingying & Yan, Xiaona, 2018. "Hybrid auto-cascade refrigeration system coupled with a heat-driven ejector cooling cycle," Energy, Elsevier, vol. 161(C), pages 988-998.
    14. Engin Söylemez, 2024. "Energy and Conventional Exergy Analysis of an Integrated Transcritical CO 2 (R-744) Refrigeration System," Energies, MDPI, vol. 17(2), pages 1-15, January.
    15. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
    16. Bodys, Jakub & Smolka, Jacek & Palacz, Michal & Haida, Michal & Banasiak, Krzysztof & Nowak, Andrzej J. & Hafner, Armin, 2016. "Performance of fixed geometry ejectors with a swirl motion installed in a multi-ejector module of a CO2 refrigeration system," Energy, Elsevier, vol. 117(P2), pages 620-631.
    17. Min-Ju Jeon, 2021. "Experimental Analysis of the R744/R404A Cascade Refrigeration System with Internal Heat Exchanger. Part 1: Coefficient of Performance Characteristics," Energies, MDPI, vol. 14(18), pages 1-20, September.
    18. Karthick, S.K. & Rao, Srisha M.V. & Jagadeesh, G. & Reddy, K.P.J., 2018. "Experimental parametric studies on the performance and mixing characteristics of a low area ratio rectangular supersonic gaseous ejector by varying the secondary flow rate," Energy, Elsevier, vol. 161(C), pages 832-845.
    19. Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.
    20. Sun, Zhili & Liang, Youcai & Liu, Shengchun & Ji, Weichuan & Zang, Runqing & Liang, Rongzhen & Guo, Zhikai, 2016. "Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A," Applied Energy, Elsevier, vol. 184(C), pages 19-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:157:y:2018:i:c:p:647-657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.