IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224024897.html
   My bibliography  Save this article

Thermodynamic performance analysis of the fractionation and flash separation auto-cascade refrigeration cycle using low GWP refrigerant

Author

Listed:
  • Li, Yinlong
  • Dong, Peiwen
  • Liu, Guoqiang
  • Yan, Gang

Abstract

The auto-cascade refrigeration is a critical technical approach to achieve below −40 °C. The separation efficiency of mixed refrigerant is a main factor affecting the performance. Fractionation purifies low-boiling composition but reduces refrigerant flow rate within the evaporator, which may decline the performance. This paper proposes two novel cycles combining fractionation and flash separation. The novel configurations purify the composition and increase the mass flow rate of refrigerant within the evaporator. The thermodynamic analysis results indicate that the presented cycles outperform the fractionation cycle and the basic cycle in terms of energy and exergy efficiency. Under the design condition, the mass fraction of low-boiling composition in the fractionation-enhanced cycle and the fractionation-modified cycle increased by 4.21 % and 2.97 % compared to the basic cycle. The mass flow rate within the evaporator of novel cycles increased by 25.87 % and 34.78 %. The COP and exergy efficiency of the fractionation-enhanced cycle and the fractionation-modified cycle is 42.57 % and 45.44 %, 46.61 % and 55.15 % higher than those of the basic cycle. Generally, the combination of fractionation and flash separation addresses the issues of low composition separation efficiency in the basic cycle and low flow rate of the fractionation cycle, enhancing the performance of the auto-cascade cycle.

Suggested Citation

  • Li, Yinlong & Dong, Peiwen & Liu, Guoqiang & Yan, Gang, 2024. "Thermodynamic performance analysis of the fractionation and flash separation auto-cascade refrigeration cycle using low GWP refrigerant," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224024897
    DOI: 10.1016/j.energy.2024.132715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224024897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Zhenhua & Pan, Zhen & Ma, Guiyang & Yu, Jingxian & Shang, Liyan & Zhang, Zhien, 2023. "Exergoeconomic, exergoenvironmental analysis and multi-objective optimization of a novel combined cooling, heating and power system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 269(C).
    2. Tan, Yingying & Li, Xiuzhen & Wang, Lin & Huang, Lisheng & Xiao, Yi & Wang, Zhanwei & Li, Shaoqiang, 2023. "Thermodynamic performance of the fractionated auto-cascade refrigeration cycle coupled with two-phase ejector using R1150/R600a at −80 °C temperature level," Energy, Elsevier, vol. 281(C).
    3. Liu, Shuilong & Bai, Tao & Wei, Yuan & Yu, Jianlin, 2023. "Performance analysis of a modified ejector-enhanced auto-cascade refrigeration cycle," Energy, Elsevier, vol. 265(C).
    4. Bai, Tao & Yan, Gang & Yu, Jianlin, 2018. "Experimental research on the pull-down performance of an ejector enhanced auto-cascade refrigeration system for low-temperature freezer," Energy, Elsevier, vol. 157(C), pages 647-657.
    5. Bai, Tao & Yan, Gang & Yu, Jianlin, 2015. "Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector," Energy, Elsevier, vol. 84(C), pages 325-335.
    6. Wang, Q. & Li, D.H. & Wang, J.P. & Sun, T.F. & Han, X.H. & Chen, G.M., 2013. "Numerical investigations on the performance of a single-stage auto-cascade refrigerator operating with two vapor–liquid separators and environmentally benign binary refrigerants," Applied Energy, Elsevier, vol. 112(C), pages 949-955.
    7. Li, Yinlong & Liu, Guoqiang & Chen, Qi & Yan, Gang, 2023. "Progress of auto-cascade refrigeration systems performance improvement: Composition separation, shift and regulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Bai, Tao & Yan, Gang & Yu, Jianlin, 2022. "Influence of internal heat exchanger position on the performance of ejector-enhanced auto-cascade refrigeration cycle for the low-temperature freezer," Energy, Elsevier, vol. 238(PC).
    9. Hamdy, Sarah & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Exergoeconomic optimization of an adiabatic cryogenics-based energy storage system," Energy, Elsevier, vol. 183(C), pages 812-824.
    10. Qin, Yanbin & Li, Nanxi & Zhang, Hua & Liu, Baolin, 2021. "Energy and exergy analysis of a Linde-Hampson refrigeration system using R170, R41 and R1132a as low-GWP refrigerant blend components to replace R23," Energy, Elsevier, vol. 229(C).
    11. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Yanbin & Zhang, Shaojie & Zhang, Hua & Tan, Yuxuan & Zhou, Guozhong & Liu, Baolin, 2025. "Experimental investigation on the performance of a −120 °C ultralow temperature refrigeration system based on a three-stage auto-cascade cycle," Energy, Elsevier, vol. 320(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yinlong & Yan, Gang & Yang, Yuqing & Dong, Peiwen & Liu, Guoqiang, 2024. "Thermodynamic analysis of new configurations of auto-cascade refrigeration cycles integrating the vortex tube," Energy, Elsevier, vol. 308(C).
    2. Li, Yinlong & Yan, Gang & Jing, Dongliang & Liu, Guoqiang & Llopis, Rodrigo, 2025. "A novel online measurement method for compositions and energy performance of an auto-cascade refrigeration system," Energy, Elsevier, vol. 318(C).
    3. Li, Yinlong & Liu, Guoqiang & Chen, Qi & Yan, Gang, 2023. "Progress of auto-cascade refrigeration systems performance improvement: Composition separation, shift and regulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    4. Yang, Kaiyin & Sun, Tianyu & Liu, Yilun & Wang, Qin & Xue, Ziqian & Yang, Hongxing & Luo, Jielin, 2025. "System modifications with a nonflammable eco-friendly mixture for ultra-low-temperature refrigeration: Energy, advanced exergy, life cycle analysis," Energy, Elsevier, vol. 320(C).
    5. Tan, Yingying & Li, Xiuzhen & Wang, Lin & Huang, Lisheng & Xiao, Yi & Wang, Zhanwei & Li, Shaoqiang, 2023. "Thermodynamic performance of the fractionated auto-cascade refrigeration cycle coupled with two-phase ejector using R1150/R600a at −80 °C temperature level," Energy, Elsevier, vol. 281(C).
    6. Qin, Yanbin & Zhang, Shaojie & Zhang, Hua & Tan, Yuxuan & Zhou, Guozhong & Liu, Baolin, 2025. "Experimental investigation on the performance of a −120 °C ultralow temperature refrigeration system based on a three-stage auto-cascade cycle," Energy, Elsevier, vol. 320(C).
    7. Ye, Kai & Liang, Youcai & Zhu, Yan & Ling, Xunjie & Wu, Jintao & Lu, Jidong, 2024. "Performance improvement and multi-objective optimization of a two-stage and dual-temperature ejector auto-cascade refrigeration cycle driven by the waste heat," Energy, Elsevier, vol. 311(C).
    8. Liu, Jiarui & Yu, Jianlin & Yan, Gang, 2024. "Experimental study on performance characteristics of a −70 °C ultra-low temperature medical freezer with mixed hydrocarbon refrigerant," Energy, Elsevier, vol. 307(C).
    9. Bai, Tao & Yan, Gang & Yu, Jianlin, 2022. "Influence of internal heat exchanger position on the performance of ejector-enhanced auto-cascade refrigeration cycle for the low-temperature freezer," Energy, Elsevier, vol. 238(PC).
    10. Qin, Yanbin & Li, Nanxi & Zhang, Hua & Liu, Baolin, 2022. "Study on the performance of an energy-efficient three-stage auto-cascade refrigeration system enhanced with a pressure regulator," Energy, Elsevier, vol. 258(C).
    11. Joon-Hyuk Lee & Hye-In Jung & Su-Been Lee & Chang-Hyo Son, 2024. "Enhancing Semiconductor Chiller Performance: Investigating the Performance Characteristics of Ultra-Low-Temperature Chillers Applying a Liquid Receiver," Energies, MDPI, vol. 17(20), pages 1-16, October.
    12. Feng, Xu & Wu, Yuting & Du, Yanjun & Qi, Di, 2024. "Optimization and performance improvement of ultra-low temperature cascade refrigeration system based on the isentropic efficiency curve of single-screw compressor," Energy, Elsevier, vol. 298(C).
    13. Bai, Tao & Yan, Gang & Yu, Jianlin, 2018. "Experimental research on the pull-down performance of an ejector enhanced auto-cascade refrigeration system for low-temperature freezer," Energy, Elsevier, vol. 157(C), pages 647-657.
    14. Liu, Shuilong & Bai, Tao & Wei, Yuan & Yu, Jianlin, 2023. "Performance analysis of a modified ejector-enhanced auto-cascade refrigeration cycle," Energy, Elsevier, vol. 265(C).
    15. Ye, Wenlian & Liu, Yang & Zhou, Zhongyou & Hu, Lulu & Liu, Yingwen, 2025. "Performance prediction of an auto-cascade refrigeration system using multiple-algorithmic approaches," Energy, Elsevier, vol. 314(C).
    16. Bai, Tao & Yu, Jianlin & Yan, Gang, 2016. "Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector," Energy, Elsevier, vol. 113(C), pages 385-398.
    17. Feng, Chunyu & Guo, Cong & Chen, Junbin & Tan, Sicong & Jiang, Yuyan, 2024. "Thermodynamic analysis of a dual-pressure evaporation high-temperature heat pump with low GWP zeotropic mixtures for steam generation," Energy, Elsevier, vol. 294(C).
    18. Gao, Yu & He, Guogeng & Cai, Dehua & Fan, Mingjing, 2020. "Performance evaluation of a modified R290 dual-evaporator refrigeration cycle using two-phase ejector as expansion device," Energy, Elsevier, vol. 212(C).
    19. Zhenzhen Liu & Jingde Jiang & Zilong Wang & Hua Zhang, 2023. "Thermodynamic Analysis of an Innovative Cold Energy Storage System for Auto-Cascade Refrigeration Applications," Energies, MDPI, vol. 16(5), pages 1-17, February.
    20. Sun, Zhili & Wang, Qifan & Xie, Zhiyuan & Liu, Shengchun & Su, Dandan & Cui, Qi, 2019. "Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system," Energy, Elsevier, vol. 170(C), pages 1170-1180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224024897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.