IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v172y2019icp675-690.html
   My bibliography  Save this article

Investigating potential benefits of a salinity gradient solar pond for ejector refrigeration cycle coupled with a thermoelectric generator

Author

Listed:
  • Rostamzadeh, Hadi
  • Nourani, Pejman

Abstract

Extraction of thermal heat from a salinity-gradient solar pond (SGSP) as a way of accumulating solar energy, stockpiling and taking merit of it for medium and low temperature demands is presented as an interesting topic in recent decades. This reliable supply of heat can be used for low-temperature refrigeration systems to yield cooling load for residential applications. For this purpose, theoretical investigation of ejector refrigeration cycle (ERC) driven by a SGSP is carried out to produce cooling output. Also, thermoelectric generator (TEG) is used as a potential device replacing condenser of the ERC for the sake of bolstering performance of the fundamental system by producing power, using heat from SGSP. To express viscosity effect of refrigerant through different components of ejector, available numerical correlations are used and it is demonstrated that this deliberation highly increases the accuracy of ejector mathematical modeling. An extensive thermodynamic evaluation on the basis of the mass-, energy-, and exergy-based balance relations for disparate constituents of the introduced system is executed and the outcomes are corroborated with those of experiential approaches. Moreover, performance of the integrated system is optimized by maximizing energy efficiency as well as exergy efficiency for an optimal solar pond. At the optimum mode, the outcomes of modeling portrayed that the introduced system can culminate in furnishing cooling capacity of 9.216 kW and net electricity of 1.026 kW, respectively, at lower convective zone (LCZ) temperature of 359.7K, LCZ's thickness of 1.003m, non-convective zone of 1.339m, upper convective zone of 0.102m, and solar pond area of 189,476m2. Under this optimum condition, the energy and exergy efficiencies are evaluated around 28.26% and 29.95%, respectively, using R245fa as working fluid in the ERC. In the optimal scenario, the ERC should be designed with primary pressure of 0.49 MPa, secondary pressure of 0.098 MPa, mass entrainment ratio of 0.3046, nozzle efficiency of 96.77%, mixer efficiency of 95.52%, and diffuser efficiency of 76.7%.

Suggested Citation

  • Rostamzadeh, Hadi & Nourani, Pejman, 2019. "Investigating potential benefits of a salinity gradient solar pond for ejector refrigeration cycle coupled with a thermoelectric generator," Energy, Elsevier, vol. 172(C), pages 675-690.
  • Handle: RePEc:eee:energy:v:172:y:2019:i:c:p:675-690
    DOI: 10.1016/j.energy.2019.01.167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219301872
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi & Farhang, Behzad, 2017. "Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles," Energy, Elsevier, vol. 139(C), pages 262-276.
    2. Amirifard, Masoumeh & Kasaeian, Alibakhsh & Amidpour, Majid, 2018. "Integration of a solar pond with a latent heat storage system," Renewable Energy, Elsevier, vol. 125(C), pages 682-693.
    3. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
    4. Ziapour, Behrooz M. & Shokrnia, Mehdi & Naseri, Mohammad, 2016. "Comparatively study between single-phase and two-phase modes of energy extraction in a salinity-gradient solar pond power plant," Energy, Elsevier, vol. 111(C), pages 126-136.
    5. Velmurugan, V. & Srithar, K., 2008. "Prospects and scopes of solar pond: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2253-2263, October.
    6. Bai, Tao & Yan, Gang & Yu, Jianlin, 2018. "Experimental research on the pull-down performance of an ejector enhanced auto-cascade refrigeration system for low-temperature freezer," Energy, Elsevier, vol. 157(C), pages 647-657.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Yan & Dhahad, Hayder A. & Hussen, Hasanen M. & Anqi, Ali E. & Farouk, Naeim & Issakhov, Alibek, 2022. "Development and tri-objective optimization of a novel biomass to power and hydrogen plant: A comparison of fueling with biomass gasification or biomass digestion," Energy, Elsevier, vol. 238(PC).
    2. Braimakis, Konstantinos, 2021. "Solar ejector cooling systems: A review," Renewable Energy, Elsevier, vol. 164(C), pages 566-602.
    3. Hai, Tao & Ashraf Ali, Masood & Alizadeh, As'ad & Sharma, Aman & Sayed Mohammed Metwally, Ahmed & Ullah, Mirzat & Tavasoli, Masoumeh, 2023. "Enhancing the performance of a Novel multigeneration system with electricity, heating, cooling, and freshwater products using genetic algorithm optimization and analysis of energy, exergy, and entrans," Renewable Energy, Elsevier, vol. 209(C), pages 184-205.
    4. Al-Nimr, Moh'd A. & Dawahdeh, Ahmad I. & Ali, Hussain A., 2022. "Power generation by integrating a thermally regenerative electrochemical cycle (TREC) with a solar pond and underground heat exchanger," Renewable Energy, Elsevier, vol. 189(C), pages 663-675.
    5. Cao, Yan & Mihardjo, Leonardus WW. & Dahari, Mahidzal & Ghaebi, Hadi & Parikhani, Towhid & Mohamed, Abdeliazim Mustafa, 2021. "An innovative double-flash binary cogeneration cooling and power (CCP) system: Thermodynamic evaluation and multi-objective optimization," Energy, Elsevier, vol. 214(C).
    6. Nazila Nematzadeh & Hadi Ghaebi & Ebrahim Abdi Aghdam, 2022. "Thermo-Economic Analysis of Innovative Integrated Power Cycles for Low-Temperature Heat Sources Based on Heat Transformer," Sustainability, MDPI, vol. 14(20), pages 1-27, October.
    7. Ghaebi, Hadi & Rostamzadeh, Hadi, 2020. "Performance comparison of two new cogeneration systems for freshwater and power production based on organic Rankine and Kalina cycles driven by salinity-gradient solar pond," Renewable Energy, Elsevier, vol. 156(C), pages 748-767.
    8. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2020. "A new high-efficient cooling/power cogeneration system based on a double-flash geothermal power plant and a novel zeotropic bi-evaporator ejector refrigeration cycle," Renewable Energy, Elsevier, vol. 162(C), pages 2126-2152.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Yang & Dai, Yiping, 2018. "Off-design performance analysis of a power-cooling cogeneration system combining a Kalina cycle with an ejector refrigeration cycle," Energy, Elsevier, vol. 161(C), pages 233-250.
    2. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    3. Qi Chen & Yinsong Li, 2022. "Experimental Investigation on Intermittent Operation Characteristics of Dual-Temperature Refrigeration System Using Hydrocarbon Mixture," Energies, MDPI, vol. 15(11), pages 1-19, May.
    4. Maria Cristina Collivignarelli & Alessandro AbbĂ  & Ilaria Benigna & Sabrina Sorlini & Vincenzo Torretta, 2017. "Overview of the Main Disinfection Processes for Wastewater and Drinking Water Treatment Plants," Sustainability, MDPI, vol. 10(1), pages 1-21, December.
    5. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    6. Gholizadeh, Towhid & Vajdi, Mohammad & Rostamzadeh, Hadi, 2020. "A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source," Renewable Energy, Elsevier, vol. 148(C), pages 31-43.
    7. Al-Nimr, Moh'd A. & Dawahdeh, Ahmad I. & Ali, Hussain A., 2022. "Power generation by integrating a thermally regenerative electrochemical cycle (TREC) with a solar pond and underground heat exchanger," Renewable Energy, Elsevier, vol. 189(C), pages 663-675.
    8. Fidelis. I. Abam & Ogheneruona E. Diemuodeke & Ekwe. B. Ekwe & Mohammed Alghassab & Olusegun D. Samuel & Zafar A. Khan & Muhammad Imran & Muhammad Farooq, 2020. "Exergoeconomic and Environmental Modeling of Integrated Polygeneration Power Plant with Biomass-Based Syngas Supplemental Firing," Energies, MDPI, vol. 13(22), pages 1-27, November.
    9. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    10. Velmurugan, V. & Naveen Kumar, K.J. & Noorul Haq, T. & Srithar, K., 2009. "Performance analysis in stepped solar still for effluent desalination," Energy, Elsevier, vol. 34(9), pages 1179-1186.
    11. Najjaran, Ahmad & Freeman, James & Ramos, Alba & Markides, Christos N., 2019. "Experimental investigation of an ammonia-water-hydrogen diffusion absorption refrigerator," Applied Energy, Elsevier, vol. 256(C).
    12. Ranjan, K.R. & Kaushik, S.C., 2014. "Thermodynamic and economic feasibility of solar ponds for various thermal applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 123-139.
    13. Ziapour, Behrooz M. & Shokrnia, Mehdi & Naseri, Mohammad, 2016. "Comparatively study between single-phase and two-phase modes of energy extraction in a salinity-gradient solar pond power plant," Energy, Elsevier, vol. 111(C), pages 126-136.
    14. Kannan, R. & Selvaganesan, C. & Vignesh, M. & Babu, B. Ramesh & Fuentes, M. & Vivar, M. & Skryabin, I. & Srithar, K., 2014. "Solar still with vapor adsorption basin: Performance analysis," Renewable Energy, Elsevier, vol. 62(C), pages 258-264.
    15. Humbert, Gabriele & Ding, Yulong & Sciacovelli, Adriano, 2022. "Combined enhancement of thermal and chemical performance of closed thermochemical energy storage system by optimized tree-like heat exchanger structures," Applied Energy, Elsevier, vol. 311(C).
    16. Cao, Yan & Mihardjo, Leonardus WW. & Dahari, Mahidzal & Ghaebi, Hadi & Parikhani, Towhid & Mohamed, Abdeliazim Mustafa, 2021. "An innovative double-flash binary cogeneration cooling and power (CCP) system: Thermodynamic evaluation and multi-objective optimization," Energy, Elsevier, vol. 214(C).
    17. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    18. Nazila Nematzadeh & Hadi Ghaebi & Ebrahim Abdi Aghdam, 2022. "Thermo-Economic Analysis of Innovative Integrated Power Cycles for Low-Temperature Heat Sources Based on Heat Transformer," Sustainability, MDPI, vol. 14(20), pages 1-27, October.
    19. Wang, Ji-Xiang & Li, Yun-Ze & Li, Jia-Xin & Li, Chao & Xiong, Kai & Ning, Xian-Wen, 2018. "Enhanced heat transfer by an original immersed spray cooling system integrated with an ejector," Energy, Elsevier, vol. 158(C), pages 512-523.
    20. Ebadollahi, Mohammad & Rostamzadeh, Hadi & Pedram, Mona Zamani & Ghaebi, Hadi & Amidpour, Majid, 2019. "Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery," Renewable Energy, Elsevier, vol. 135(C), pages 66-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:172:y:2019:i:c:p:675-690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.