IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipes0360544221027018.html
   My bibliography  Save this article

Ejector optimization and performance analysis of electric vehicle CO2 heat pump with dual ejectors

Author

Listed:
  • Zou, Huiming
  • Yang, Tianyang
  • Tang, Mingsheng
  • Tian, Changqing
  • Butrymowicz, Dariusz

Abstract

The performance of fixed ejector is limited by working conditions, so it is difficult to meet the operating requirements of electric vehicle heat pump system under varying conditions and wide temperature range. In this paper, a transcritical CO2 refrigeration cycle with dual ejectors in parallel (DEP) for electric vehicle heat pump system is established and its operation condition weight statistics method in all climate is proposed. On this basis, a fixed ejector optimization method based on the genetic algorithm is proposed, which takes the increment of integrated part load value (ΔIPLV) compared to the conventional transcritical CO2 refrigeration cycle (CON) system as the evaluation index. The performance analysis results show that under the cooling conditions, the coefficient of performance (COP) of DEP system with the optimized ejector for cooling is increased by 17.32%–23.42% compared to the CON system, and the COP of the transcritical CO2 refrigeration cycle with a single ejector (SEJ) system is increased by 7.31%–9.47%. In the heating mode, the COP of DEP system with the optimized ejector for heating is increased by 18%–19.79%, while the COP of SEJ system with the unoptimized ejector is decreased by 0.07%–2.43%.

Suggested Citation

  • Zou, Huiming & Yang, Tianyang & Tang, Mingsheng & Tian, Changqing & Butrymowicz, Dariusz, 2022. "Ejector optimization and performance analysis of electric vehicle CO2 heat pump with dual ejectors," Energy, Elsevier, vol. 239(PE).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221027018
    DOI: 10.1016/j.energy.2021.122452
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221027018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Jianyong & Jarall, Sad & Havtun, Hans & Palm, Björn, 2015. "A review on versatile ejector applications in refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 67-90.
    2. Dai, Baomin & Liu, Shengchun & Zhu, Kai & Sun, Zhili & Ma, Yitai, 2017. "Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander," Energy, Elsevier, vol. 122(C), pages 787-800.
    3. Sumeru, K. & Nasution, H. & Ani, F.N., 2012. "A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4927-4937.
    4. Chen, Hongjie & Zhu, Jiahua & Ge, Jing & Lu, Wei & Zheng, Lixing, 2020. "A cylindrical mixing chamber ejector analysis model to predict the optimal nozzle exit position," Energy, Elsevier, vol. 208(C).
    5. Bai, Tao & Yan, Gang & Yu, Jianlin, 2015. "Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector," Energy, Elsevier, vol. 84(C), pages 325-335.
    6. Han, Xinxin & Zou, Huiming & Tian, Changqing & Tang, Mingsheng & Yan, Yuying, 2019. "Numerical study on the heating performance of a novel integrated thermal management system for the electric bus," Energy, Elsevier, vol. 186(C).
    7. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    8. Ma, Yitai & Liu, Zhongyan & Tian, Hua, 2013. "A review of transcritical carbon dioxide heat pump and refrigeration cycles," Energy, Elsevier, vol. 55(C), pages 156-172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lixing Zheng & Yiyan Zhang & Lifen Hao & Haojie Lian & Jianqiang Deng & Wei Lu, 2022. "Modelling, Optimization, and Experimental Studies of Refrigeration CO 2 Ejectors: A Review," Mathematics, MDPI, vol. 10(22), pages 1-23, November.
    2. Hongzeng Ji & Jinchen Pei & Jingyang Cai & Chen Ding & Fen Guo & Yichun Wang, 2023. "Review of Recent Advances in Transcritical CO 2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field," Energies, MDPI, vol. 16(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    2. Konrad, Mary Elizabeth & MacDonald, Brendan D., 2023. "Cold climate air source heat pumps: Industry progress and thermodynamic analysis of market-available residential units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    4. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    5. Zeng, Min-Qiang & Zheng, Qiu-Yun & Zhang, Xue-Lai & Mo, Fan-Yang & Zhang, Xin-Rong, 2022. "Thermodynamic analysis of a novel multi-target temperature transcritical CO2 ejector-expansion refrigeration cycle with vapor-injection," Energy, Elsevier, vol. 259(C).
    6. Yan, Gang & Bai, Tao & Yu, Jianlin, 2016. "Thermodynamic analysis on a modified ejector expansion refrigeration cycle with zeotropic mixture (R290/R600a) for freezers," Energy, Elsevier, vol. 95(C), pages 144-154.
    7. Zhang, Youjun & Xiong, Nian & Ge, Zhihua & Zhang, Yichen & Hao, Junhong & Yang, Zhiping, 2020. "A novel cascade heating system for waste heat recovery in the combined heat and power plant integrating with the steam jet pump," Applied Energy, Elsevier, vol. 278(C).
    8. Knut Emil Ringstad & Krzysztof Banasiak & Åsmund Ervik & Armin Hafner, 2022. "Swirl-Bypass Nozzle for CO 2 Two-Phase Ejectors: Numerical Design Exploration," Energies, MDPI, vol. 15(18), pages 1-30, September.
    9. Braimakis, Konstantinos, 2021. "Solar ejector cooling systems: A review," Renewable Energy, Elsevier, vol. 164(C), pages 566-602.
    10. Hafiz Ali Muhammad & Hafiz Muhammad Abdullah & Zabdur Rehman & Beomjoon Lee & Young-Jin Baik & Jongjae Cho & Muhammad Imran & Manzar Masud & Mohsin Saleem & Muhammad Shoaib Butt, 2020. "Numerical Modeling of Ejector and Development of Improved Methods for the Design of Ejector-Assisted Refrigeration System," Energies, MDPI, vol. 13(21), pages 1-19, November.
    11. Song, Yulong & Wang, Haidan & Ma, Yuan & Yin, Xiang & Cao, Feng, 2022. "Energetic, economic, environmental investigation of carbon dioxide as the refrigeration alternative in new energy bus/railway vehicles’ air conditioning systems," Applied Energy, Elsevier, vol. 305(C).
    12. Bai, Tao & Yan, Gang & Yu, Jianlin, 2018. "Experimental research on the pull-down performance of an ejector enhanced auto-cascade refrigeration system for low-temperature freezer," Energy, Elsevier, vol. 157(C), pages 647-657.
    13. Bai, Tao & Yu, Jianlin & Yan, Gang, 2016. "Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector," Energy, Elsevier, vol. 113(C), pages 385-398.
    14. Hasan, Alabas & Mugdadi, Basheer & Al-Nimr, Moh'd A. & Tashtoush, Bourhan, 2022. "Direct and indirect utilization of thermal energy for cooling generation: A comparative analysis," Energy, Elsevier, vol. 238(PC).
    15. Gao, Yu & He, Guogeng & Cai, Dehua & Fan, Mingjing, 2020. "Performance evaluation of a modified R290 dual-evaporator refrigeration cycle using two-phase ejector as expansion device," Energy, Elsevier, vol. 212(C).
    16. Liu, Ye & Yu, Jianlin, 2018. "Performance analysis of an advanced ejector-expansion autocascade refrigeration cycle," Energy, Elsevier, vol. 165(PB), pages 859-867.
    17. Michal Haida & Rafal Fingas & Wojciech Szwajnoch & Jacek Smolka & Michal Palacz & Jakub Bodys & Andrzej J. Nowak, 2019. "An Object-Oriented R744 Two-Phase Ejector Reduced-Order Model for Dynamic Simulations," Energies, MDPI, vol. 12(7), pages 1-24, April.
    18. Zhao, Zhen & Luo, Jielin & Zou, Dexin & Yang, Kaiyin & Wang, Qin & Chen, Guangming, 2023. "Experimental investigation on the inhibition of flame retardants on the flammability of R1234ze(E)," Energy, Elsevier, vol. 263(PE).
    19. Zhu, Jingwei & Botticella, Francesco & Elbel, Stefan, 2018. "Experimental investigation and theoretical analysis of oil circulation rates in ejector cooling cycles," Energy, Elsevier, vol. 157(C), pages 718-733.
    20. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    More about this item

    Keywords

    CO2; Ejector optimization; Electric vehicle; Heat pump;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221027018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.