IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v122y2017icp787-800.html
   My bibliography  Save this article

Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander

Author

Listed:
  • Dai, Baomin
  • Liu, Shengchun
  • Zhu, Kai
  • Sun, Zhili
  • Ma, Yitai

Abstract

New configurations of transcritical CO2 refrigeration cycle combined with a thermoelectric (TE) subcooler and an expander (TES+EXPHM and TES+EXPML) are proposed. The expander can operate between the high-pressure to the vessel pressure, or from vessel pressure to evaporation pressure. A power system is utilized to balance and supply power to thermoelectric subcooler and compressor. Thermodynamic performance optimizations and analyses are presented. Comparisons are carried out with the BASE, EXPHM, EXPML, and TES cycles. The results show that the coefficient of performance (COP) improvement is more notable when the expander is installed between the liquid receiver and the evaporator. Maximum COP is obtained for the new cycles with a simultaneous optimization of discharge pressure and subcooling temperature. The new proposed TES+EXPML cycle shows an excellent and steady performance than other cycles. It operates not only with the highest COP, but also the lowest discharge pressure. Under the working conditions of high gas cooler outlet temperature or low evaporation temperature, the merits of COP improvement and discharge pressure reduction are more prominent. The new cycle is more suitable for the hot regions where the CO2 can not be sufficiently subcooled or the refrigerated space operates at low evaporation temperature.

Suggested Citation

  • Dai, Baomin & Liu, Shengchun & Zhu, Kai & Sun, Zhili & Ma, Yitai, 2017. "Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander," Energy, Elsevier, vol. 122(C), pages 787-800.
  • Handle: RePEc:eee:energy:v:122:y:2017:i:c:p:787-800
    DOI: 10.1016/j.energy.2017.01.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217300282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jun Lan & Ma, Yi Tai & Liu, Sheng Chun, 2007. "Performance investigation of transcritical carbon dioxide two-stage compression cycle with expander," Energy, Elsevier, vol. 32(3), pages 237-245.
    2. Jiang, Yuntao & Ma, Yitai & Fu, Lin & Li, Minxia, 2013. "Some design features of CO2 two-rolling piston expander," Energy, Elsevier, vol. 55(C), pages 916-924.
    3. Dai, Baomin & Li, Minxia & Ma, Yitai, 2014. "Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery," Energy, Elsevier, vol. 64(C), pages 942-952.
    4. Yang, Jun Lan & Ma, Yi Tai & Li, Min Xia & Guan, Hai Qing, 2005. "Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander," Energy, Elsevier, vol. 30(7), pages 1162-1175.
    5. Lior, Noam & Zhang, Na, 2007. "Energy, exergy, and Second Law performance criteria," Energy, Elsevier, vol. 32(4), pages 281-296.
    6. Yang, Jun Lan & Ma, Yi Tai & Li, Min Xia & Hua, Jun, 2010. "Modeling and simulating the transcritical CO2 heat pump system," Energy, Elsevier, vol. 35(12), pages 4812-4818.
    7. Wang, Hailei & Peterson, Richard & Herron, Tom, 2011. "Design study of configurations on system COP for a combined ORC (organic Rankine cycle) and VCC (vapor compression cycle)," Energy, Elsevier, vol. 36(8), pages 4809-4820.
    8. Ma, Yitai & Liu, Zhongyan & Tian, Hua, 2013. "A review of transcritical carbon dioxide heat pump and refrigeration cycles," Energy, Elsevier, vol. 55(C), pages 156-172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    2. Sui, Yunren & Wu, Wei, 2023. "Ionic liquid screening and performance optimization of transcritical carbon dioxide absorption heat pump enhanced by expander," Energy, Elsevier, vol. 263(PA).
    3. Kaiyong Hu & Yumeng Zhang & Wei Yang & Zhi Liu & Huan Sun & Zhili Sun, 2023. "Energy, Exergy, and Economic (3E) Analysis of Transcritical Carbon Dioxide Refrigeration System Based on ORC System," Energies, MDPI, vol. 16(4), pages 1-16, February.
    4. Yulong Song & Hongsheng Xie & Mengying Yang & Xiangyu Wei & Feng Cao & Xiang Yin, 2023. "A Comprehensive Assessment of the Refrigerant Charging Amount on the Global Performance of a Transcritical CO 2 -Based Bus Air Conditioning and Heat Pump System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    5. Zou, Huiming & Yang, Tianyang & Tang, Mingsheng & Tian, Changqing & Butrymowicz, Dariusz, 2022. "Ejector optimization and performance analysis of electric vehicle CO2 heat pump with dual ejectors," Energy, Elsevier, vol. 239(PE).
    6. Sadighi Dizaji, Hamed & Jafarmadar, Samad & Khalilarya, Shahram & Pourhedayat, Samira, 2019. "A comprehensive exergy analysis of a prototype Peltier air-cooler; experimental investigation," Renewable Energy, Elsevier, vol. 131(C), pages 308-317.
    7. Li, Jiaojiao & Zoghi, Mohammad & Zhao, Linfeng, 2022. "Thermo-economic assessment and optimization of a geothermal-driven tri-generation system for power, cooling, and hydrogen production," Energy, Elsevier, vol. 244(PB).
    8. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    9. Dai, Baomin & Liu, Shengchun & Li, Hailong & Sun, Zhili & Song, Mengjie & Yang, Qianru & Ma, Yitai, 2018. "Energetic performance of transcritical CO2 refrigeration cycles with mechanical subcooling using zeotropic mixture as refrigerant," Energy, Elsevier, vol. 150(C), pages 205-221.
    10. Yap, Ken Shaun & Ooi, Kim Tiow & Chakraborty, Anutosh, 2018. "Analysis of the novel cross vane expander-compressor: Mathematical modelling and experimental study," Energy, Elsevier, vol. 145(C), pages 626-637.
    11. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Guo, Zhikai & Chen, Jiangping, 2019. "Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems," Applied Energy, Elsevier, vol. 239(C), pages 1142-1153.
    12. Song, Yulong & Wang, Haidan & Ma, Yuan & Yin, Xiang & Cao, Feng, 2022. "Energetic, economic, environmental investigation of carbon dioxide as the refrigeration alternative in new energy bus/railway vehicles’ air conditioning systems," Applied Energy, Elsevier, vol. 305(C).
    13. Pourhedayat, Samira, 2018. "Application of thermoelectric as an instant running-water cooler; experimental study under different operating conditions," Applied Energy, Elsevier, vol. 229(C), pages 364-374.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xiao Xiao & Chen, Guang Ming & Tang, Li Ming & Zhu, Zhi Jiang, 2012. "Experimental investigation on performance of transcritical CO2 heat pump system with ejector under optimum high-side pressure," Energy, Elsevier, vol. 44(1), pages 870-877.
    2. Bai, Tao & Yan, Gang & Yu, Jianlin, 2015. "Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector," Energy, Elsevier, vol. 84(C), pages 325-335.
    3. Zhili, Sun & Minxia, Li & Guangming, Han & Yitai, Ma, 2013. "Performance study of a transcritical carbon dioxide cycle with an expressor," Energy, Elsevier, vol. 60(C), pages 77-86.
    4. Yap, Ken Shaun & Ooi, Kim Tiow & Chakraborty, Anutosh, 2018. "Analysis of the novel cross vane expander-compressor: Mathematical modelling and experimental study," Energy, Elsevier, vol. 145(C), pages 626-637.
    5. Artur Bieniek & Jan Kuchmacz & Karol Sztekler & Lukasz Mika & Ewelina Radomska, 2021. "A New Method of Regulating the Cooling Capacity of a Cooling System with CO 2," Energies, MDPI, vol. 14(7), pages 1-18, March.
    6. Yari, Mortaza & Mahmoudi, S.M.S., 2011. "Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO2) cascade refrigeration cycles (Novel transcritical CO2 cycle)," Energy, Elsevier, vol. 36(12), pages 6839-6850.
    7. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    8. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    9. Fan Feng & Ze Zhang & Xiufang Liu & Changhai Liu & Yu Hou, 2020. "The Influence of Internal Heat Exchanger on the Performance of Transcritical CO 2 Water Source Heat Pump Water Heater," Energies, MDPI, vol. 13(7), pages 1-14, April.
    10. Austin, Brian T. & Sumathy, K., 2011. "Transcritical carbon dioxide heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4013-4029.
    11. Bo Zhang & Liu Chen & Lang Liu & Xiaoyan Zhang & Mei Wang & Changfa Ji & KI-IL Song, 2018. "Parameter Sensitivity Study for Typical Expander-Based Transcritical CO 2 Refrigeration Cycles," Energies, MDPI, vol. 11(5), pages 1-20, May.
    12. Qin, Lei & Xie, Gongnan & Ma, Yuan & Li, Shulei, 2023. "Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    13. Jiang, Yuntao & Ma, Yitai & Fu, Lin & Li, Minxia, 2013. "Some design features of CO2 two-rolling piston expander," Energy, Elsevier, vol. 55(C), pages 916-924.
    14. Lu, Yuanwei & He, Wei & Wu, Yuting & Ji, Weining & Ma, Chongfang & Guo, Hang, 2013. "Performance study on compressed air refrigeration system based on single screw expander," Energy, Elsevier, vol. 55(C), pages 762-768.
    15. Zeng, Min-Qiang & Zheng, Qiu-Yun & Zhang, Xue-Lai & Mo, Fan-Yang & Zhang, Xin-Rong, 2022. "Thermodynamic analysis of a novel multi-target temperature transcritical CO2 ejector-expansion refrigeration cycle with vapor-injection," Energy, Elsevier, vol. 259(C).
    16. Benlin Shi & Muqing Chen & Weikai Chi & Qichao Yang & Guangbin Liu & Yuanyang Zhao & Liansheng Li, 2022. "Effects of Internal Heat Exchanger on Two-Stage Compression Trans-Critical CO 2 Refrigeration Cycle Combined with Expander and Intercooling," Energies, MDPI, vol. 16(1), pages 1-16, December.
    17. Yari, Mortaza & Mehr, A.S. & Mahmoudi, S.M.S., 2013. "Thermodynamic analysis and optimization of a novel dual-evaporator system powered by electrical and solar energy sources," Energy, Elsevier, vol. 61(C), pages 646-656.
    18. Ohkura, Masashi & Yokoyama, Ryohei & Nakamata, Takuya & Wakui, Tetsuya, 2015. "Numerical analysis on performance enhancement of a CO2 heat pump water heating system by extracting tepid water," Energy, Elsevier, vol. 87(C), pages 435-447.
    19. Yari, M. & Mehr, A.S. & Mahmoudi, S.M.S., 2013. "Simulation study of the combination of absorption refrigeration and ejector-expansion systems," Renewable Energy, Elsevier, vol. 60(C), pages 370-381.
    20. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:122:y:2017:i:c:p:787-800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.