IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp942-952.html
   My bibliography  Save this article

Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery

Author

Listed:
  • Dai, Baomin
  • Li, Minxia
  • Ma, Yitai

Abstract

Carbon dioxide is a promising natural working fluid that can be used in transcritical Rankine cycles due to environmental and safety concerns. However, the high operation pressure has to be reduced and the relatively low efficiency of the system has to be increased. Traditional working fluids have been widely investigated to reclaim low-grade heat energy, and most of them have high GWPs (global warming potentials) or are flammable or even toxic. Consequently, to mitigate the above disadvantages, we studied zeotropic mixtures of carbon dioxide blends with 7 low GWP working fluids for use in a TRC (transcritical Rankine cycle) for low-grade heat conversion. The results revealed that these zeotropic mixtures can help improve the thermal efficiency of the TRC and decrease the operation pressure compared to that of pure CO2. Owing to the perfect thermal match in the heat transfer process, higher exergy efficiencies were achieved for the entire system when zeotropic mixtures were used than pure CO2. Maximum exergy efficiencies exist for the TRC at the corresponding optimal pressures for each mixture. Finally, the mixture CO2/R161 is recommended for small capacity instruments for its high efficiency, in spite of its high flammability; the mixtures CO2/R1234yf and CO2/R1234ze can be used in TRCs with larger capacities due to their lower flammability.

Suggested Citation

  • Dai, Baomin & Li, Minxia & Ma, Yitai, 2014. "Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery," Energy, Elsevier, vol. 64(C), pages 942-952.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:942-952
    DOI: 10.1016/j.energy.2013.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421300981X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heberle, Florian & Preißinger, Markus & Brüggemann, Dieter, 2012. "Zeotropic mixtures as working fluids in Organic Rankine Cycles for low-enthalpy geothermal resources," Renewable Energy, Elsevier, vol. 37(1), pages 364-370.
    2. Chys, M. & van den Broek, M. & Vanslambrouck, B. & De Paepe, M., 2012. "Potential of zeotropic mixtures as working fluids in organic Rankine cycles," Energy, Elsevier, vol. 44(1), pages 623-632.
    3. Zhang, X.R. & Yamaguchi, H. & Fujima, K. & Enomoto, M. & Sawada, N., 2007. "Theoretical analysis of a thermodynamic cycle for power and heat production using supercritical carbon dioxide," Energy, Elsevier, vol. 32(4), pages 591-599.
    4. Vélez, Fredy & Segovia, José & Chejne, Farid & Antolín, Gregorio & Quijano, Ana & Carmen Martín, M., 2011. "Low temperature heat source for power generation: Exhaustive analysis of a carbon dioxide transcritical power cycle," Energy, Elsevier, vol. 36(9), pages 5497-5507.
    5. Zhang, Xin-Rong & Yamaguchi, Hiroshi & Uneno, Daisuke, 2007. "Experimental study on the performance of solar Rankine system using supercritical CO2," Renewable Energy, Elsevier, vol. 32(15), pages 2617-2628.
    6. Larjola, J., 1995. "Electricity from industrial waste heat using high-speed organic Rankine cycle (ORC)," International Journal of Production Economics, Elsevier, vol. 41(1-3), pages 227-235, October.
    7. Chen, Huijuan & Goswami, D. Yogi & Rahman, Muhammad M. & Stefanakos, Elias K., 2011. "A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power," Energy, Elsevier, vol. 36(1), pages 549-555.
    8. Madhawa Hettiarachchi, H.D. & Golubovic, Mihajlo & Worek, William M. & Ikegami, Yasuyuki, 2007. "Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources," Energy, Elsevier, vol. 32(9), pages 1698-1706.
    9. Zhang, X.R. & Yamaguchi, H. & Uneno, D. & Fujima, K. & Enomoto, M. & Sawada, N., 2006. "Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide," Renewable Energy, Elsevier, vol. 31(12), pages 1839-1854.
    10. Angelino, Gianfranco & Colonna di Paliano, Piero, 1998. "Multicomponent Working Fluids For Organic Rankine Cycles (ORCs)," Energy, Elsevier, vol. 23(6), pages 449-463.
    11. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    12. Saleh, Bahaa & Koglbauer, Gerald & Wendland, Martin & Fischer, Johann, 2007. "Working fluids for low-temperature organic Rankine cycles," Energy, Elsevier, vol. 32(7), pages 1210-1221.
    13. Cayer, Emmanuel & Galanis, Nicolas & Desilets, Martin & Nesreddine, Hakim & Roy, Philippe, 2009. "Analysis of a carbon dioxide transcritical power cycle using a low temperature source," Applied Energy, Elsevier, vol. 86(7-8), pages 1055-1063, July.
    14. Chen, Huijuan & Yogi Goswami, D. & Rahman, Muhammad M. & Stefanakos, Elias K., 2011. "Energetic and exergetic analysis of CO2- and R32-based transcritical Rankine cycles for low-grade heat conversion," Applied Energy, Elsevier, vol. 88(8), pages 2802-2808, August.
    15. Schuster, A. & Karellas, S. & Aumann, R., 2010. "Efficiency optimization potential in supercritical Organic Rankine Cycles," Energy, Elsevier, vol. 35(2), pages 1033-1039.
    16. Cayer, Emmanuel & Galanis, Nicolas & Nesreddine, Hakim, 2010. "Parametric study and optimization of a transcritical power cycle using a low temperature source," Applied Energy, Elsevier, vol. 87(4), pages 1349-1357, April.
    17. Lior, Noam & Zhang, Na, 2007. "Energy, exergy, and Second Law performance criteria," Energy, Elsevier, vol. 32(4), pages 281-296.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    2. Bao, Junjiang & Zhao, Li, 2012. "Exergy analysis and parameter study on a novel auto-cascade Rankine cycle," Energy, Elsevier, vol. 48(1), pages 539-547.
    3. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    4. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    5. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    6. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    7. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    8. Hong Gao & Chao Liu & Chao He & Xiaoxiao Xu & Shuangying Wu & Yourong Li, 2012. "Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery," Energies, MDPI, vol. 5(9), pages 1-15, August.
    9. Vélez, Fredy & Segovia, José & Chejne, Farid & Antolín, Gregorio & Quijano, Ana & Carmen Martín, M., 2011. "Low temperature heat source for power generation: Exhaustive analysis of a carbon dioxide transcritical power cycle," Energy, Elsevier, vol. 36(9), pages 5497-5507.
    10. Sánchez, Carlos J.N. & da Silva, Alexandre K., 2018. "Technical and environmental analysis of transcritical Rankine cycles operating with numerous CO2 mixtures," Energy, Elsevier, vol. 142(C), pages 180-190.
    11. Chen, Huijuan & Yogi Goswami, D. & Rahman, Muhammad M. & Stefanakos, Elias K., 2011. "Energetic and exergetic analysis of CO2- and R32-based transcritical Rankine cycles for low-grade heat conversion," Applied Energy, Elsevier, vol. 88(8), pages 2802-2808, August.
    12. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    13. Ram Mohan, Arun & Turaga, Uday & Shembekar, Vishakha & Elsworth, Derek & Pisupati, Sarma V., 2013. "Utilization of carbon dioxide from coal-based power plants as a heat transfer fluid for electricity generation in enhanced geothermal systems (EGS)," Energy, Elsevier, vol. 57(C), pages 505-512.
    14. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    15. Sarkar, Jahar, 2015. "Analyses and optimization of a supercritical N2O Rankine cycle for low-grade heat conversion," Energy, Elsevier, vol. 81(C), pages 344-351.
    16. Baccioli, A. & Antonelli, M. & Desideri, U., 2017. "Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 199(C), pages 69-87.
    17. Guo, T. & Wang, H.X. & Zhang, S.J., 2011. "Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources," Energy, Elsevier, vol. 36(5), pages 2639-2649.
    18. Ge, Y.T. & Li, L. & Luo, X. & Tassou, S.A., 2018. "Performance evaluation of a low-grade power generation system with CO2 transcritical power cycles," Applied Energy, Elsevier, vol. 227(C), pages 220-230.
    19. Lee, Ung & Kim, Kyeongsu & Han, Chonghun, 2014. "Design and optimization of multi-component organic rankine cycle using liquefied natural gas cryogenic exergy," Energy, Elsevier, vol. 77(C), pages 520-532.
    20. Wu, Chuang & Yan, Xiao-jiang & Wang, Shun-sen & Bai, Kun-lun & Di, Juan & Cheng, Shang-fang & Li, Jun, 2016. "System optimisation and performance analysis of CO2 transcritical power cycle for waste heat recovery," Energy, Elsevier, vol. 100(C), pages 391-400.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:942-952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.