IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i4p1349-1357.html
   My bibliography  Save this article

Parametric study and optimization of a transcritical power cycle using a low temperature source

Author

Listed:
  • Cayer, Emmanuel
  • Galanis, Nicolas
  • Nesreddine, Hakim

Abstract

A parametric study and optimization is performed on a transcritical power cycle using six performance indicators: thermal efficiency, specific net output, exergetic efficiency, total UA and surface of the heat exchangers as well as the relative cost of the system. The independent parameters are the maximum temperature and pressure of the cycle as well as the net power output. Results show that it is impossible to simultaneously optimise all six performance indicators, i.e. that the values of the independent parameters are not the same for all the optimizations. The design value for these parameters is therefore a matter of choice, or compromise, among the combinations optimising the performance indicators. For a limited low temperature heat source the parametric studies reveal the existence of a maximum value for the net power output of the system and of another net power output minimising the cost per kW. A comparison of optimised results for three working fluids (CO2, ethane, R125) shows that the better fluid depends on the optimised indicator and clearly indicates that a simple first law analysis is not sufficient for the selection of a working fluid. In summary, this paper demonstrates the need to achieve a multi-point optimization and comparison in order to study adequately a transcritical power system.

Suggested Citation

  • Cayer, Emmanuel & Galanis, Nicolas & Nesreddine, Hakim, 2010. "Parametric study and optimization of a transcritical power cycle using a low temperature source," Applied Energy, Elsevier, vol. 87(4), pages 1349-1357, April.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:4:p:1349-1357
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00367-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, X.R. & Yamaguchi, H. & Fujima, K. & Enomoto, M. & Sawada, N., 2007. "Theoretical analysis of a thermodynamic cycle for power and heat production using supercritical carbon dioxide," Energy, Elsevier, vol. 32(4), pages 591-599.
    2. Saleh, Bahaa & Koglbauer, Gerald & Wendland, Martin & Fischer, Johann, 2007. "Working fluids for low-temperature organic Rankine cycles," Energy, Elsevier, vol. 32(7), pages 1210-1221.
    3. Cayer, Emmanuel & Galanis, Nicolas & Desilets, Martin & Nesreddine, Hakim & Roy, Philippe, 2009. "Analysis of a carbon dioxide transcritical power cycle using a low temperature source," Applied Energy, Elsevier, vol. 86(7-8), pages 1055-1063, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    2. Dai, Baomin & Li, Minxia & Ma, Yitai, 2014. "Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery," Energy, Elsevier, vol. 64(C), pages 942-952.
    3. Bao, Junjiang & Zhao, Li, 2012. "Exergy analysis and parameter study on a novel auto-cascade Rankine cycle," Energy, Elsevier, vol. 48(1), pages 539-547.
    4. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    5. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    6. Wang, J.L. & Zhao, L. & Wang, X.D., 2012. "An experimental study on the recuperative low temperature solar Rankine cycle using R245fa," Applied Energy, Elsevier, vol. 94(C), pages 34-40.
    7. Yang, Min-Hsiung & Yeh, Rong-Hua, 2016. "Economic performances optimization of an organic Rankine cycle system with lower global warming potential working fluids in geothermal application," Renewable Energy, Elsevier, vol. 85(C), pages 1201-1213.
    8. Wang, Jiangfeng & Sun, Zhixin & Dai, Yiping & Ma, Shaolin, 2010. "Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network," Applied Energy, Elsevier, vol. 87(4), pages 1317-1324, April.
    9. Mondal, Subha & De, Sudipta, 2015. "CO2 based power cycle with multi-stage compression and intercooling for low temperature waste heat recovery," Energy, Elsevier, vol. 90(P1), pages 1132-1143.
    10. Jing, Li & Gang, Pei & Jie, Ji, 2010. "Optimization of low temperature solar thermal electric generation with Organic Rankine Cycle in different areas," Applied Energy, Elsevier, vol. 87(11), pages 3355-3365, November.
    11. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
    12. Guo, T. & Wang, H.X. & Zhang, S.J., 2011. "Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources," Energy, Elsevier, vol. 36(5), pages 2639-2649.
    13. Mondal, Subha & De, Sudipta, 2015. "Transcritical CO2 power cycle – Effects of regenerative heating using turbine bleed gas at intermediate pressure," Energy, Elsevier, vol. 87(C), pages 95-103.
    14. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    15. Ge, Y.T. & Li, L. & Luo, X. & Tassou, S.A., 2018. "Performance evaluation of a low-grade power generation system with CO2 transcritical power cycles," Applied Energy, Elsevier, vol. 227(C), pages 220-230.
    16. Hong Gao & Chao Liu & Chao He & Xiaoxiao Xu & Shuangying Wu & Yourong Li, 2012. "Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery," Energies, MDPI, vol. 5(9), pages 1-15, August.
    17. Wu, Chuang & Yan, Xiao-jiang & Wang, Shun-sen & Bai, Kun-lun & Di, Juan & Cheng, Shang-fang & Li, Jun, 2016. "System optimisation and performance analysis of CO2 transcritical power cycle for waste heat recovery," Energy, Elsevier, vol. 100(C), pages 391-400.
    18. Xu, Jinliang & Yu, Chao, 2014. "Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles," Energy, Elsevier, vol. 74(C), pages 719-733.
    19. Ho, Tony & Mao, Samuel S. & Greif, Ralph, 2012. "Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy," Energy, Elsevier, vol. 42(1), pages 213-223.
    20. Vélez, Fredy & Segovia, José & Chejne, Farid & Antolín, Gregorio & Quijano, Ana & Carmen Martín, M., 2011. "Low temperature heat source for power generation: Exhaustive analysis of a carbon dioxide transcritical power cycle," Energy, Elsevier, vol. 36(9), pages 5497-5507.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:4:p:1349-1357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.