IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923014253.html
   My bibliography  Save this article

Life cycle climate performance evaluation (LCCP) of electric vehicle heat pumps using low-GWP refrigerants towards China's carbon neutrality

Author

Listed:
  • Yu, Binbin
  • Long, Junan
  • Zhang, Yingjing
  • Ouyang, Hongsheng
  • Wang, Dandong
  • Shi, Junye
  • Chen, Jiangping

Abstract

The environmental-friendly heat pump with low global warming potential (GWP), such as R1234yf, CO2, R290, and several potentially promising refrigerant mixtures, is increasingly essential for the electric vehicle (EV) to save energy consumption and extend the driving range. It is beneficial to achieve carbon neutrality by reducing both direct and indirect carbon emissions. Previously, the life cycle climate performance (LCCP) was a widely accepted metric to evaluate the carbon footprint of mobile air conditioning systems “from cradle to grave” for the internal combustion engine vehicle (ICEV), however, such LCCP analyses about EV heat pumps can hardly be found. To facilitate the EV industry and policymakers' better understanding of the environmental impacts of those low-GWP refrigerants, this study provided a comprehensive LCCP analysis for the EV heat pumps based on the system bench test results, local climates, local power supply characteristics, real-world driving patterns, vehicle cabin thermal sensation, and climate control load. Five low-GWP refrigerants, i.e., R1234yf, CO2, R290, binary blends of CO2 and R41 (with GWP values of 49), M2(R410A substitute with GWP values of 137), were compared against R134a and R410A in 31 provinces of mainland China. We also considered the impacts of electric vehicle adoption rates and the carbon intensity of electricity from 2020 to 2060. Results show that the total life-cycle emissions per vehicle are highly related to climate conditions in different provinces, while R290 shows the lowest emission on the national average. The national mean life-cycle emissions per vehicle are projected to decrease 14% by 2030 and 45.4% by 2060 under the current technological trajectory of electricity generation. By using low-GWP heat pump systems in EVs, the cumulative emissions counting all vehicles can be saved up to 1450 Mt. CO2e from 2020 to 2060.

Suggested Citation

  • Yu, Binbin & Long, Junan & Zhang, Yingjing & Ouyang, Hongsheng & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2024. "Life cycle climate performance evaluation (LCCP) of electric vehicle heat pumps using low-GWP refrigerants towards China's carbon neutrality," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014253
    DOI: 10.1016/j.apenergy.2023.122061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.