IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4470-d600490.html
   My bibliography  Save this article

Energy and Exergy Analysis of the Air Source Transcritical CO 2 Heat Pump Water Heater Using CO 2 -Based Mixture as Working Fluid

Author

Listed:
  • Yikai Wang

    (School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yifan He

    (School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yulong Song

    (School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Xiang Yin

    (School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Feng Cao

    (School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Xiaolin Wang

    (School of Engineering, University of Tasmania, Hobart, TAS 7001, Australia)

Abstract

Given the large demand nowadays for domestic hot water, and its impact on modern building energy consumption, air source transcritical CO 2 heat pumps have been extensively adopted for hot water production. Since their system efficiency is limited by significant irreversibility, a CO 2 -based mixture could offer a promising drop-in technology to overcome this deficiency without increasing system complexity. Although many CO 2 blends have been studied in previously published literature, little has been presented about the CO 2 /R32 mixture. Therefore, a proposed mixture for use in transcritical CO 2 heat pumps was analyzed using energy and exergy analysis. Results showed that the coefficient of performance and exergy efficiency variation displayed an “M” shape trend, and the optimal CO 2 /R32 mixture concentration was determined as 0.9/0.1 with regard to flammability and efficiency. The irreversibility of the throttling valve was reduced from 0.031 to 0.009 kW⋅kW −1 and the total irreversibility reduction was more notable with ambient temperature variation. A case study was also conducted to examine domestic hot water demand during the year. Pure CO 2 and the proposed CO 2 blend were compared with regard to annual performance factor and annual exergy efficiency, and the findings could provide guidance for practical applications in the future.

Suggested Citation

  • Yikai Wang & Yifan He & Yulong Song & Xiang Yin & Feng Cao & Xiaolin Wang, 2021. "Energy and Exergy Analysis of the Air Source Transcritical CO 2 Heat Pump Water Heater Using CO 2 -Based Mixture as Working Fluid," Energies, MDPI, vol. 14(15), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4470-:d:600490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heberle, Florian & Preißinger, Markus & Brüggemann, Dieter, 2012. "Zeotropic mixtures as working fluids in Organic Rankine Cycles for low-enthalpy geothermal resources," Renewable Energy, Elsevier, vol. 37(1), pages 364-370.
    2. Yang, Jun Lan & Ma, Yi Tai & Li, Min Xia & Guan, Hai Qing, 2005. "Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander," Energy, Elsevier, vol. 30(7), pages 1162-1175.
    3. Fei Wang & Rijing Zhao & Wenming Xu & Dong Huang & Zhiguo Qu, 2021. "A Heater-Assisted Air Source Heat Pump Air Conditioner to Improve Thermal Comfort with Frost-Retarded Heating and Heat-Uninterrupted Defrosting," Energies, MDPI, vol. 14(9), pages 1-13, May.
    4. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Guo, Zhikai & Chen, Jiangping, 2019. "Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems," Applied Energy, Elsevier, vol. 239(C), pages 1142-1153.
    5. Chesi, Andrea & Esposito, Fabio & Ferrara, Giovanni & Ferrari, Lorenzo, 2014. "Experimental analysis of R744 parallel compression cycle," Applied Energy, Elsevier, vol. 135(C), pages 274-285.
    6. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    7. Xu, Yingjie & Mao, Chengbin & Huang, Yuangong & Shen, Xi & Xu, Xiaoxiao & Chen, Guangming, 2021. "Performance evaluation and multi-objective optimization of a low-temperature CO2 heat pump water heater based on artificial neural network and new economic analysis," Energy, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    2. Qin, Lei & Xie, Gongnan & Ma, Yuan & Li, Shulei, 2023. "Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    3. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Hongzeng Ji & Jinchen Pei & Jingyang Cai & Chen Ding & Fen Guo & Yichun Wang, 2023. "Review of Recent Advances in Transcritical CO 2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field," Energies, MDPI, vol. 16(10), pages 1-21, May.
    5. Rajib Uddin Rony & Huojun Yang & Sumathy Krishnan & Jongchul Song, 2019. "Recent Advances in Transcritical CO 2 (R744) Heat Pump System: A Review," Energies, MDPI, vol. 12(3), pages 1-35, January.
    6. Jesús Catalán-Gil & Daniel Sánchez & Rodrigo Llopis & Laura Nebot-Andrés & Ramón Cabello, 2018. "Energy Evaluation of Multiple Stage Commercial Refrigeration Architectures Adapted to F-Gas Regulation," Energies, MDPI, vol. 11(7), pages 1-31, July.
    7. Michal Haida & Rafal Fingas & Wojciech Szwajnoch & Jacek Smolka & Michal Palacz & Jakub Bodys & Andrzej J. Nowak, 2019. "An Object-Oriented R744 Two-Phase Ejector Reduced-Order Model for Dynamic Simulations," Energies, MDPI, vol. 12(7), pages 1-24, April.
    8. Song, Yulong & Wang, Haidan & Ma, Yuan & Yin, Xiang & Cao, Feng, 2022. "Energetic, economic, environmental investigation of carbon dioxide as the refrigeration alternative in new energy bus/railway vehicles’ air conditioning systems," Applied Energy, Elsevier, vol. 305(C).
    9. Yulong Song & Hongsheng Xie & Mengying Yang & Xiangyu Wei & Feng Cao & Xiang Yin, 2023. "A Comprehensive Assessment of the Refrigerant Charging Amount on the Global Performance of a Transcritical CO 2 -Based Bus Air Conditioning and Heat Pump System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    10. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    11. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    12. Zhao, Shuchun & Guo, Junheng & Dang, Xiuhu & Ai, Bingyan & Zhang, Minqing & Li, Wei & Zhang, Jinli, 2022. "Energy consumption, flow characteristics and energy-efficient design of cup-shape blade stirred tank reactors: Computational fluid dynamics and artificial neural network investigation," Energy, Elsevier, vol. 240(C).
    13. Frank Bruno & Martin Belusko & Edward Halawa, 2019. "CO 2 Refrigeration and Heat Pump Systems—A Comprehensive Review," Energies, MDPI, vol. 12(15), pages 1-39, August.
    14. Zhang, Nan & Lu, Yiji & Kadam, Sambhaji & Yu, Zhibin, 2023. "A fuel cell range extender integrating with heat pump for cabin heat and power generation," Applied Energy, Elsevier, vol. 348(C).
    15. Dai, Baomin & Li, Minxia & Ma, Yitai, 2014. "Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery," Energy, Elsevier, vol. 64(C), pages 942-952.
    16. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    17. Satanphol, K. & Pridasawas, W. & Suphanit, B., 2017. "A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery," Energy, Elsevier, vol. 123(C), pages 326-339.
    18. Fan Feng & Ze Zhang & Xiufang Liu & Changhai Liu & Yu Hou, 2020. "The Influence of Internal Heat Exchanger on the Performance of Transcritical CO 2 Water Source Heat Pump Water Heater," Energies, MDPI, vol. 13(7), pages 1-14, April.
    19. Abbas Aghagoli & Mikhail Sorin & Mohammed Khennich, 2022. "Exergy Efficiency and COP Improvement of a CO 2 Transcritical Heat Pump System by Replacing an Expansion Valve with a Tesla Turbine," Energies, MDPI, vol. 15(14), pages 1-16, July.
    20. Angelo Maiorino & Ciro Aprea & Manuel Gesù Del Duca, 2021. "A Flexible Top-Down Numerical Modeling of an Air-Cooled Finned-Tube CO 2 Trans-Critical Gas Cooler," Energies, MDPI, vol. 14(22), pages 1-30, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4470-:d:600490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.