IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261924000011.html
   My bibliography  Save this article

Energy, exergy, economic, and life cycle environmental analysis of a novel biogas-fueled solid oxide fuel cell hybrid power generation system assisted with solar thermal energy storage unit

Author

Listed:
  • Ran, Peng
  • Ou, YiFan
  • Zhang, ChunYu
  • Chen, YuTong

Abstract

Biogas production and its derived hydrogen production technology have broad application prospects. In this paper, an integrated biogas power generation system with solid oxide fuel cells is proposed, which mainly consists of four units: a solar thermal energy storage unit, a biogas production and hydrogen generation unit, a SOFC-MGT unit, and a waste heat utilization unit. The presented system is first studied using energy, exergy, economic, and life cycle environmental analyses and the survey results are contrasted with those of renewable energy systems discussed in the references. Besides, a parametric study is conducted to explore the effect of thermodynamic parameters of solar irradiance, ambient temperature, work fluid temperature, reforming temperature, inlet H2O/CH4 ratio of the reformer, and the current density of SOFC. Results indicate that the proposed system's energy efficiency, exergy efficiency, electric power output and exergy destruction are 43.29%, 37.4%, 414.16 kW (net power generation is 351.43 kW) and 1434.59 kW, respectivily. Moreover, the system's levelized cost of electricity and carbon emission factor are $0.076/kWh and 335.6gCO2eq/kWh, having good economic and environmental benefits simultaneously. The parametric study shows that PTSC can be designed shorter with more solar irradiance and high ambient temperature. Besides, the increase of inlet H2O/CH4 ratio and reforming temperature make the system's energy efficiency fall by 2.5% and 20%. For every 300 A/m2 increase in the current density of SOFC, the system efficiency rises by 1.01%.

Suggested Citation

  • Ran, Peng & Ou, YiFan & Zhang, ChunYu & Chen, YuTong, 2024. "Energy, exergy, economic, and life cycle environmental analysis of a novel biogas-fueled solid oxide fuel cell hybrid power generation system assisted with solar thermal energy storage unit," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261924000011
    DOI: 10.1016/j.apenergy.2024.122618
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anvari, Simin & Mahian, Omid & Taghavifar, Hadi & Wongwises, Somchai & Desideri, Umberto, 2020. "4E analysis of a modified multigeneration system designed for power, heating/cooling, and water desalination," Applied Energy, Elsevier, vol. 270(C).
    2. Wang, Yuqing & Wehrle, Lukas & Banerjee, Aayan & Shi, Yixiang & Deutschmann, Olaf, 2021. "Analysis of a biogas-fed SOFC CHP system based on multi-scale hierarchical modeling," Renewable Energy, Elsevier, vol. 163(C), pages 78-87.
    3. Liu, Huidong & Xu, Guoren & Li, Guibai, 2021. "Autocatalytic sludge pyrolysis by biochar derived from pharmaceutical sludge for biogas upgrading," Energy, Elsevier, vol. 229(C).
    4. You, Huailiang & Han, Jitian & Liu, Yang & Chen, Changnian & Ge, Yi, 2020. "4E analysis and multi-objective optimization of a micro poly-generation system based on SOFC/MGT/MED and organic steam ejector refrigerator," Energy, Elsevier, vol. 206(C).
    5. Li, Xiaolei & Xu, Ershu & Song, Shuang & Wang, Xiangyan & Yuan, Guofeng, 2017. "Dynamic simulation of two-tank indirect thermal energy storage system with molten salt," Renewable Energy, Elsevier, vol. 113(C), pages 1311-1319.
    6. Giarola, Sara & Forte, Ornella & Lanzini, Andrea & Gandiglio, Marta & Santarelli, Massimo & Hawkes, Adam, 2018. "Techno-economic assessment of biogas-fed solid oxide fuel cell combined heat and power system at industrial scale," Applied Energy, Elsevier, vol. 211(C), pages 689-704.
    7. Pham, Cuong H. & Triolo, Jin M. & Sommer, Sven G., 2014. "Predicting methane production in simple and unheated biogas digesters at low temperatures," Applied Energy, Elsevier, vol. 136(C), pages 1-6.
    8. Yan, Pu & Xiao, Chunwang & Xu, Li & Yu, Guirui & Li, Ang & Piao, Shilong & He, Nianpeng, 2020. "Biomass energy in China's terrestrial ecosystems: Insights into the nation's sustainable energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    10. Zhang, Kuan & Zhou, Bin & Li, Canbing & Voropai, Nikolai & Li, Jiayong & Huang, Wentao & Wang, Tao, 2021. "Dynamic modeling and coordinated multi-energy management for a sustainable biogas-dominated energy hub," Energy, Elsevier, vol. 220(C).
    11. Ribó-Pérez, David & Herraiz-Cañete, Ángela & Alfonso-Solar, David & Vargas-Salgado, Carlos & Gómez-Navarro, Tomás, 2021. "Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER," Renewable Energy, Elsevier, vol. 174(C), pages 501-512.
    12. Bui, Van Ga & Tu Bui, Thi Minh & Ong, Hwai Chyuan & Nižetić, Sandro & Bui, Van Hung & Xuan Nguyen, Thi Thanh & Atabani, A.E. & Štěpanec, Libor & Phu Pham, Le Hoang & Hoang, Anh Tuan, 2022. "Optimizing operation parameters of a spark-ignition engine fueled with biogas-hydrogen blend integrated into biomass-solar hybrid renewable energy system," Energy, Elsevier, vol. 252(C).
    13. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    14. Zhu, Pengfei & Wu, Zhen & Wang, Huan & Yan, Hongli & Li, Bo & Yang, Fusheng & Zhang, Zaoxiao, 2022. "Ni coarsening and performance attenuation prediction of biomass syngas fueled SOFC by combining multi-physics field modeling and artificial neural network," Applied Energy, Elsevier, vol. 322(C).
    15. Rillo, E. & Gandiglio, M. & Lanzini, A. & Bobba, S. & Santarelli, M. & Blengini, G., 2017. "Life Cycle Assessment (LCA) of biogas-fed Solid Oxide Fuel Cell (SOFC) plant," Energy, Elsevier, vol. 126(C), pages 585-602.
    16. Ding, Xiaoyi & Lv, Xiaojing & Weng, Yiwu, 2019. "Coupling effect of operating parameters on performance of a biogas-fueled solid oxide fuel cell/gas turbine hybrid system," Applied Energy, Elsevier, vol. 254(C).
    17. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
    18. Liu, Changyu & Sun, Yongxiang & Li, Dong & Bian, Ji & Wu, Yangyang & Li, Pengfei & Sun, Yong, 2022. "Influence of enclosure filled with phase change material on photo-thermal regulation of direct absorption anaerobic reactor: Numerical and experimental study," Applied Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Xiaoyi & Lv, Xiaojing & Weng, Yiwu, 2019. "Coupling effect of operating parameters on performance of a biogas-fueled solid oxide fuel cell/gas turbine hybrid system," Applied Energy, Elsevier, vol. 254(C).
    2. Iliya Krastev Iliev & Antonina Andreevna Filimonova & Andrey Alexandrovich Chichirov & Natalia Dmitrievna Chichirova & Alexander Vadimovich Pechenkin & Artem Sergeevich Vinogradov, 2023. "Theoretical and Experimental Studies of Combined Heat and Power Systems with SOFCs," Energies, MDPI, vol. 16(4), pages 1-17, February.
    3. Marta Gandiglio & Fabrizio De Sario & Andrea Lanzini & Silvia Bobba & Massimo Santarelli & Gian Andrea Blengini, 2019. "Life Cycle Assessment of a Biogas-Fed Solid Oxide Fuel Cell (SOFC) Integrated in a Wastewater Treatment Plant," Energies, MDPI, vol. 12(9), pages 1-31, April.
    4. Liang, Wenxing & Yu, Zeting & Bian, Feiyu & Wu, Haonan & Zhang, Kaifan & Ji, Shaobo & Cui, Bo, 2023. "Techno-economic-environmental analysis and optimization of biomass-based SOFC poly-generation system," Energy, Elsevier, vol. 285(C).
    5. Wang, Qiushi & Duan, Liqiang & Zheng, Nan & Lu, Ziyi, 2023. "4E Analysis of a novel combined cooling, heating and power system coupled with solar thermochemical process and energy storage," Energy, Elsevier, vol. 275(C).
    6. Wang, Yuqing & Wehrle, Lukas & Banerjee, Aayan & Shi, Yixiang & Deutschmann, Olaf, 2021. "Analysis of a biogas-fed SOFC CHP system based on multi-scale hierarchical modeling," Renewable Energy, Elsevier, vol. 163(C), pages 78-87.
    7. Al-Khori, Khalid & Bicer, Yusuf & Koç, Muammer, 2021. "Comparative techno-economic assessment of integrated PV-SOFC and PV-Battery hybrid system for natural gas processing plants," Energy, Elsevier, vol. 222(C).
    8. Zhu, Pengfei & Wu, Zhen & Yang, Yuchen & Wang, Huan & Li, Ruiqing & Yang, Fusheng & Zhang, Zaoxiao, 2023. "The dynamic response of solid oxide fuel cell fueled by syngas during the operating condition variations," Applied Energy, Elsevier, vol. 349(C).
    9. Ramin Ghasemiasl & Hossein Dehghanizadeh & Mohammad Amin Javadi & Mohammad Abdolmaleki, 2023. "4E Transient Analysis of a Solar-Hybrid Gas-Turbine Cycle Equipped with Heliostat and MED," Sustainability, MDPI, vol. 15(11), pages 1-26, May.
    10. Wang, Aili & Wang, Shunsheng & Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood & Moghadam, Ali Jabari, 2022. "Techno-economic and techno-environmental assessment and multi-objective optimization of a new CCHP system based on waste heat recovery from regenerative Brayton cycle," Energy, Elsevier, vol. 241(C).
    11. Wang, Pengya & Wang, Jianxiao & Jin, Ruiyang & Li, Gengyin & Zhou, Ming & Xia, Qing, 2022. "Integrating biogas in regional energy systems to achieve near-zero carbon emissions," Applied Energy, Elsevier, vol. 322(C).
    12. Pietrasanta, Ariana M. & Mussati, Sergio F. & Aguirre, Pio A. & Morosuk, Tatiana & Mussati, Miguel C., 2022. "Optimization of a multi-generation power, desalination, refrigeration and heating system," Energy, Elsevier, vol. 238(PB).
    13. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2021. "A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies," Energies, MDPI, vol. 14(16), pages 1-43, August.
    14. Ouyang, Tiancheng & Zhao, Zhongkai & Wang, Zhiping & Zhang, Mingliang & Liu, Benlong, 2021. "A high-efficiency scheme for waste heat harvesting of solid oxide fuel cell integrated homogeneous charge compression ignition engine," Energy, Elsevier, vol. 229(C).
    15. Lyu, Zewei & Shi, Wangying & Han, Minfang, 2018. "Electrochemical characteristics and carbon tolerance of solid oxide fuel cells with direct internal dry reforming of methane," Applied Energy, Elsevier, vol. 228(C), pages 556-567.
    16. Wang, Jiangjiang & Cui, Zhiheng & Yao, Wenqi & Huo, Shuojie, 2023. "Regulation strategies and thermodynamic analysis of combined cooling, heating, and power system integrated with biomass gasification and solid oxide fuel cell," Energy, Elsevier, vol. 266(C).
    17. Pal, Ankit & Ilango, G. Saravana, 2024. "Design and techno-economic analysis of an off-grid integrated PV-biogas system with a constant temperature digester for a cost-effective rural application," Energy, Elsevier, vol. 287(C).
    18. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    19. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261924000011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.