IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v174y2021icp501-512.html
   My bibliography  Save this article

Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER

Author

Listed:
  • Ribó-Pérez, David
  • Herraiz-Cañete, Ángela
  • Alfonso-Solar, David
  • Vargas-Salgado, Carlos
  • Gómez-Navarro, Tomás

Abstract

Off grid electrification is key to achieving universal electricity access. Despite the potential of biomass gasifiers as a clean technology to ensure reliable systems, they are not as well looked upon as their advantages suggest. In particular, the software HOMER, which researchers and technicians use the most to simulate and design Microgrids, does not include biomass gasification among its simulation technologies. Although some authors did simulate biomass gasifiers in HOMER, the necessary parameters and procedures to calculate and include them in the tool remain unclear, non-replicable, and leave open research questions as regards modelling. Using the inbuilt Biogas power plant modules in HOMER, this paper presents a set of steps to include the technical and economic parameters to simulate fuelling an electric generator through the syngas produced in a downdraft biomass gasification plant. Two case studies of isolated rural communities in Honduras and Zambia show the viability of the procedure. These case studies also confirm the technical and economic viability of islanded biomass-photovoltaic hybrid renewable energy microgrids. In both cases, the energy demand supplied and distributed by the microgrid had a Levelized Cost of Energy lower than the alternative of extending the electric grid to the communities.

Suggested Citation

  • Ribó-Pérez, David & Herraiz-Cañete, Ángela & Alfonso-Solar, David & Vargas-Salgado, Carlos & Gómez-Navarro, Tomás, 2021. "Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER," Renewable Energy, Elsevier, vol. 174(C), pages 501-512.
  • Handle: RePEc:eee:renene:v:174:y:2021:i:c:p:501-512
    DOI: 10.1016/j.renene.2021.04.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121006030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Odou, Oluwarotimi Delano Thierry & Bhandari, Ramchandra & Adamou, Rabani, 2020. "Hybrid off-grid renewable power system for sustainable rural electrification in Benin," Renewable Energy, Elsevier, vol. 145(C), pages 1266-1279.
    2. Brent, Alan Colin & Rogers, David E., 2010. "Renewable rural electrification: Sustainability assessment of mini-hybrid off-grid technological systems in the African context," Renewable Energy, Elsevier, vol. 35(1), pages 257-265.
    3. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    4. Fodhil, F. & Hamidat, A. & Nadjemi, O., 2019. "Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria," Energy, Elsevier, vol. 169(C), pages 613-624.
    5. He, Xiaoping & Reiner, David, 2016. "Electricity demand and basic needs: Empirical evidence from China's households," Energy Policy, Elsevier, vol. 90(C), pages 212-221.
    6. Andrea Porcu & Stefano Sollai & Davide Marotto & Mauro Mureddu & Francesca Ferrara & Alberto Pettinau, 2019. "Techno-Economic Analysis of a Small-Scale Biomass-to-Energy BFB Gasification-Based System," Energies, MDPI, vol. 12(3), pages 1-17, February.
    7. Jahangir, Mohammad Hossein & Fakouriyan, Samaneh & Vaziri Rad, Mohammad Amin & Dehghan, Hassan, 2020. "Feasibility study of on/off grid large-scale PV/WT/WEC hybrid energy system in coastal cities: A case-based research," Renewable Energy, Elsevier, vol. 162(C), pages 2075-2095.
    8. Natarianto Indrawan & Betty Simkins & Ajay Kumar & Raymond L. Huhnke, 2020. "Economics of Distributed Power Generation via Gasification of Biomass and Municipal Solid Waste," Energies, MDPI, vol. 13(14), pages 1-18, July.
    9. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Azmi, Azralmukmin & Ramli, Makbul A.M., 2019. "Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq," Renewable Energy, Elsevier, vol. 138(C), pages 775-792.
    10. Montuori, Lina & Vargas-Salgado, Carlos & Alcázar-Ortega, Manuel, 2015. "Impact of the throat sizing on the operating parameters in an experimental fixed bed gasifier: Analysis, evaluation and testing," Renewable Energy, Elsevier, vol. 83(C), pages 615-625.
    11. Okudoh, Vincent & Trois, Cristina & Workneh, Tilahun & Schmidt, Stefan, 2014. "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1035-1052.
    12. Chambon, Clementine L. & Karia, Tanuj & Sandwell, Philip & Hallett, Jason P., 2020. "Techno-economic assessment of biomass gasification-based mini-grids for productive energy applications: The case of rural India," Renewable Energy, Elsevier, vol. 154(C), pages 432-444.
    13. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2016. "The potential role of solid biomass for rural electrification: A techno economic analysis for a hybrid microgrid in India," Applied Energy, Elsevier, vol. 169(C), pages 370-383.
    14. Situmorang, Yohanes Andre & Zhao, Zhongkai & Yoshida, Akihiro & Abudula, Abuliti & Guan, Guoqing, 2020. "Small-scale biomass gasification systems for power generation (<200 kW class): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    15. Thomas Morstyn & Niall Farrell & Sarah J. Darby & Malcolm D. McCulloch, 2018. "Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants," Nature Energy, Nature, vol. 3(2), pages 94-101, February.
    16. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    17. Martínez, Juan Daniel & Mahkamov, Khamid & Andrade, Rubenildo V. & Silva Lora, Electo E., 2012. "Syngas production in downdraft biomass gasifiers and its application using internal combustion engines," Renewable Energy, Elsevier, vol. 38(1), pages 1-9.
    18. Ramchandran, Neeraj & Pai, Rajesh & Parihar, Amit Kumar Singh, 2016. "Feasibility assessment of Anchor-Business-Community model for off-grid rural electrification in India," Renewable Energy, Elsevier, vol. 97(C), pages 197-209.
    19. Veiga, João Paulo Soto & Valle, Teresa Losada & Feltran, José Carlos & Bizzo, Waldir Antonio, 2016. "Characterization and productivity of cassava waste and its use as an energy source," Renewable Energy, Elsevier, vol. 93(C), pages 691-699.
    20. Carlos Vargas-Salgado & Elías Hurtado-Pérez & David Alfonso-Solar & Anders Malmquist, 2021. "Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    21. Muhoza, Cassilde & Johnson, Oliver W., 2018. "Exploring household energy transitions in rural Zambia from the user perspective," Energy Policy, Elsevier, vol. 121(C), pages 25-34.
    22. J. R. Copa & C. E. Tuna & J. L. Silveira & R. A. M. Boloy & P. Brito & V. Silva & J. Cardoso & D. Eusébio, 2020. "Techno-Economic Assessment of the Use of Syngas Generated from Biomass to Feed an Internal Combustion Engine," Energies, MDPI, vol. 13(12), pages 1-31, June.
    23. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    24. Hafez, Omar & Bhattacharya, Kankar, 2012. "Optimal planning and design of a renewable energy based supply system for microgrids," Renewable Energy, Elsevier, vol. 45(C), pages 7-15.
    25. David Alfonso-Solar & Carlos Vargas-Salgado & Carlos Sánchez-Díaz & Elías Hurtado-Pérez, 2020. "Small-Scale Hybrid Photovoltaic-Biomass Systems Feasibility Analysis for Higher Education Buildings," Sustainability, MDPI, vol. 12(21), pages 1-14, November.
    26. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    27. Montuori, Lina & Alcázar-Ortega, Manuel & Álvarez-Bel, Carlos & Domijan, Alex, 2014. "Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator," Applied Energy, Elsevier, vol. 132(C), pages 15-22.
    28. Das, S. & Kashyap, D. & Kalita, P. & Kulkarni, V. & Itaya, Y., 2020. "Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    29. Islam, Md Shahinur & Akhter, Ruma & Rahman, Mohammad Ashifur, 2018. "A thorough investigation on hybrid application of biomass gasifier and PV resources to meet energy needs for a northern rural off-grid region of Bangladesh: A potential solution to replicate in rural ," Energy, Elsevier, vol. 145(C), pages 338-355.
    30. Das, Barun K. & Zaman, Forhad, 2019. "Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection," Energy, Elsevier, vol. 169(C), pages 263-276.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Younessi, Hiva Seyed & Bahramara, Salah & Adabi, Farid & Golpîra, Hêmin, 2023. "Modeling the optimal sizing problem of the biogas-based electrical generator in a livestock farm considering a gas storage tank and the anaerobic digester process under the uncertainty of cow dung," Energy, Elsevier, vol. 270(C).
    2. Sangjib Kwon & Hyungbae Gil & Seoin Baek & Heetae Kim, 2022. "Optimal Solution for a Renewable-Energy-Generation System at a Private Educational Institute in South Korea," Energies, MDPI, vol. 15(24), pages 1-11, December.
    3. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Technologies, Methods, and Economic Analysis for Sustainable Development of Energy, Water, and Environment Systems," Energies, MDPI, vol. 15(19), pages 1-24, September.
    4. Shiva Amini & Salah Bahramara & Hêmin Golpîra & Bruno Francois & João Soares, 2022. "Techno-Economic Analysis of Renewable-Energy-Based Micro-Grids Considering Incentive Policies," Energies, MDPI, vol. 15(21), pages 1-19, November.
    5. Tomin, Nikita & Shakirov, Vladislav & Kurbatsky, Victor & Muzychuk, Roman & Popova, Ekaterina & Sidorov, Denis & Kozlov, Alexandr & Yang, Dechang, 2022. "A multi-criteria approach to designing and managing a renewable energy community," Renewable Energy, Elsevier, vol. 199(C), pages 1153-1175.
    6. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2021. "A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies," Energies, MDPI, vol. 14(16), pages 1-43, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blessing Ugwoke & Adedoyin Adeleke & Stefano P. Corgnati & Joshua M. Pearce & Pierluigi Leone, 2020. "Decentralized Renewable Hybrid Mini-Grids for Rural Communities: Culmination of the IREP Framework and Scale up to Urban Communities," Sustainability, MDPI, vol. 12(18), pages 1-26, September.
    2. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    3. Vargas-Salgado, Carlos & Águila-León, Jesús & Alfonso-Solar, David & Malmquist, Anders, 2022. "Simulations and experimental study to compare the behavior of a genset running on gasoline or syngas for small scale power generation," Energy, Elsevier, vol. 244(PA).
    4. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    5. Demirci, Alpaslan & Akar, Onur & Ozturk, Zafer, 2022. "Technical-environmental-economic evaluation of biomass-based hybrid power system with energy storage for rural electrification," Renewable Energy, Elsevier, vol. 195(C), pages 1202-1217.
    6. Fazlur Rashid & Md. Emdadul Hoque & Muhammad Aziz & Talukdar Nazmus Sakib & Md. Tariqul Islam & Raihan Moker Robin, 2021. "Investigation of Optimal Hybrid Energy Systems Using Available Energy Sources in a Rural Area of Bangladesh," Energies, MDPI, vol. 14(18), pages 1-24, September.
    7. Sanni, Shereefdeen Oladapo & Oricha, Joseph Yakubu & Oyewole, Taoheed Oluwafemi & Bawonda, Femi Ikotoni, 2021. "Analysis of backup power supply for unreliable grid using hybrid solar PV/diesel/biogas system," Energy, Elsevier, vol. 227(C).
    8. Islam, M.S. & Das, Barun K. & Das, Pronob & Rahaman, Md Habibur, 2021. "Techno-economic optimization of a zero emission energy system for a coastal community in Newfoundland, Canada," Energy, Elsevier, vol. 220(C).
    9. Cai, Wei & Li, Xing & Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A. & Alhuyi Nazari, Mohammad & Bui, Dieu Tien, 2020. "Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology," Energy, Elsevier, vol. 201(C).
    10. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Hussain, Moaid K. & Adzman, Mohd Rafi & Ghazali, Nur Hafizah & Ramli, Makbul A.M. & Khalil Zidane, Tekai Eddine, 2022. "A new optimization strategy for wind/diesel/battery hybrid energy system," Energy, Elsevier, vol. 239(PE).
    11. Ahmad, Jameel & Imran, Muhammad & Khalid, Abdullah & Iqbal, Waseem & Ashraf, Syed Rehan & Adnan, Muhammad & Ali, Syed Farooq & Khokhar, Khawar Siddique, 2018. "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, Elsevier, vol. 148(C), pages 208-234.
    12. Das, Barun K. & Hasan, Mahmudul & Das, Pronob, 2021. "Impact of storage technologies, temporal resolution, and PV tracking on stand-alone hybrid renewable energy for an Australian remote area application," Renewable Energy, Elsevier, vol. 173(C), pages 362-380.
    13. Das, Barun K. & Hasan, Mahmudul, 2021. "Optimal sizing of a stand-alone hybrid system for electric and thermal loads using excess energy and waste heat," Energy, Elsevier, vol. 214(C).
    14. Ribó-Pérez, David & Bastida-Molina, Paula & Gómez-Navarro, Tomás & Hurtado-Pérez, Elías, 2020. "Hybrid assessment for a hybrid microgrid: A novel methodology to critically analyse generation technologies for hybrid microgrids," Renewable Energy, Elsevier, vol. 157(C), pages 874-887.
    15. Susann Stritzke & Prem Jain, 2021. "The Sustainability of Decentralised Renewable Energy Projects in Developing Countries: Learning Lessons from Zambia," Energies, MDPI, vol. 14(13), pages 1-44, June.
    16. He, Li & Zhang, Shiyue & Chen, Yizhong & Ren, Lixia & Li, Jing, 2018. "Techno-economic potential of a renewable energy-based microgrid system for a sustainable large-scale residential community in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 631-641.
    17. García-Villoria, Alberto & Domenech, Bruno & Ferrer-Martí, Laia & Juanpera, Marc & Pastor, Rafael, 2020. "Ad-hoc heuristic for design of wind-photovoltaic electrification systems, including management constraints," Energy, Elsevier, vol. 212(C).
    18. Gabriele Calì & Paolo Deiana & Claudia Bassano & Simone Meloni & Enrico Maggio & Michele Mascia & Alberto Pettinau, 2020. "Syngas Production, Clean-Up and Wastewater Management in a Demo-Scale Fixed-Bed Updraft Biomass Gasification Unit," Energies, MDPI, vol. 13(10), pages 1-15, May.
    19. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    20. Saif Mubaarak & Delong Zhang & Jinxin Liu & Yongcong Chen & Longze Wang & Sayed A. Zaki & Rongfang Yuan & Jing Wu & Yan Zhang & Meicheng Li, 2020. "Potential Techno-Economic Feasibility of Hybrid Energy Systems for Electrifying Various Consumers in Yemen," Sustainability, MDPI, vol. 13(1), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:174:y:2021:i:c:p:501-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.