IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7856-d1474428.html
   My bibliography  Save this article

Optimal Hybrid Renewable Energy System to Accelerate a Sustainable Energy Transition in Johor, Malaysia

Author

Listed:
  • Pei Juan Yew

    (Department of Energy Convergence and Climate Change, Kyungpook National University, Buk-gu, Daegu 41566, Republic of Korea)

  • Deepak Chaulagain

    (Department of Convergence and Fusion System Engineering, Kyungpook National University, Sangju 37224, Republic of Korea)

  • Noel Ngando Same

    (Department of Convergence and Fusion System Engineering, Kyungpook National University, Sangju 37224, Republic of Korea)

  • Jaebum Park

    (Department of Convergence and Fusion System Engineering, Kyungpook National University, Sangju 37224, Republic of Korea)

  • Jeong-Ok Lim

    (Regional Leading Research Center for Net-Zero Carbon Smart Energy System, Kyungpook National University, Sangju 37224, Republic of Korea)

  • Jeung-Soo Huh

    (Department of Energy Convergence and Climate Change, Kyungpook National University, Buk-gu, Daegu 41566, Republic of Korea
    Department of Convergence and Fusion System Engineering, Kyungpook National University, Sangju 37224, Republic of Korea)

Abstract

As the world’s second-largest palm oil producer, Malaysia heavily depends on its extensive oil palm cultivation, which accounts for nearly 90% of the country’s lignocellulosic biomass waste. Approximately 20–22 tonnes of empty fruit bunches (EFBs) can be derived from an initial yield of 100 tonnes of fresh fruit bunches (FFBs) from oil palm trees. The average annual amount of EFBs produced in Johor is 3233 tonnes per day. Recognising that urban areas contribute significantly to anthropogenic greenhouse gas emissions, and to support Malaysia’s transition from fossil fuel-based energy to a low-carbon energy system, this research employed HOMER Pro software 3.18.3 to develop an optimal hybrid renewable energy system integrating solar and biomass (EFB) energy sources in Johor, Malaysia. The most cost-effective system (solar–biomass) consists of 4075 kW solar photovoltaics, a 2100 kW biomass gasifier, 9363 battery units and 1939 kW converters. This configuration results in a total net present cost (NPC) of USD 44,596,990 and a levelised cost of energy (LCOE) of USD 0.2364/kWh. This system satisfies the residential load demand via 6,020,427 kWh (64.7%) of solar-based and 3,286,257 kWh (35.3%) of biomass-based electricity production, with an annual surplus of 2,613,329 kWh (28.1%). The minimal percentages of unmet electric load and capacity shortage, both <0.1%, indicate that all systems can meet the power demand. In conclusion, this research provides valuable insights into the economic viability and technical feasibility of powering the Kulai district with a solar–biomass system.

Suggested Citation

  • Pei Juan Yew & Deepak Chaulagain & Noel Ngando Same & Jaebum Park & Jeong-Ok Lim & Jeung-Soo Huh, 2024. "Optimal Hybrid Renewable Energy System to Accelerate a Sustainable Energy Transition in Johor, Malaysia," Sustainability, MDPI, vol. 16(17), pages 1-24, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7856-:d:1474428
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7856/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7856/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jinze & Liu, Pei & Li, Zheng, 2020. "Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China," Energy, Elsevier, vol. 208(C).
    2. Mohd F. M. A. Zamri & Jassinnee Milano & Abd H. Shamsuddin & Mohd E. M. Roslan & Siti F. Salleh & Adlansyah A. Rahman & Raihana Bahru & Islam M. R. Fattah & T. M. Indra Mahlia, 2022. "An overview of palm oil biomass for power generation sector decarbonization in Malaysia: Progress, challenges, and prospects," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(4), July.
    3. Ribó-Pérez, David & Herraiz-Cañete, Ángela & Alfonso-Solar, David & Vargas-Salgado, Carlos & Gómez-Navarro, Tomás, 2021. "Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER," Renewable Energy, Elsevier, vol. 174(C), pages 501-512.
    4. Sadhukhan, Jhuma & Martinez-Hernandez, Elias & Murphy, Richard J. & Ng, Denny K.S. & Hassim, Mimi H. & Siew Ng, Kok & Yoke Kin, Wan & Jaye, Ida Fahani Md & Leung Pah Hang, Melissa Y. & Andiappan, Vikn, 2018. "Role of bioenergy, biorefinery and bioeconomy in sustainable development: Strategic pathways for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1966-1987.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veknesh Arumugam & Ismail Abdullah & Irwan Syah Md Yusoff & Nor Liza Abdullah & Ramli Mohd Tahir & Ahadi Mohd Nasir & Ammar Ehsan Omar & Muhammad Heikal Ismail, 2021. "The Impact of COVID-19 on Solid Waste Generation in the Perspectives of Socioeconomic and People’s Behavior: A Case Study in Serdang, Malaysia," Sustainability, MDPI, vol. 13(23), pages 1-11, November.
    2. Alvin Henao & Luceny Guzman, 2024. "Exploration of Alternatives to Reduce the Gap in Access to Electricity in Rural Communities—Las Nubes Village Case (Barranquilla, Colombia)," Energies, MDPI, vol. 17(1), pages 1-19, January.
    3. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Lemence, Allen Lemuel G. & Tamayao, Mili-Ann M., 2021. "Energy consumption profile estimation and benefits of hybrid solar energy system adoption for rural health units in the Philippines," Renewable Energy, Elsevier, vol. 178(C), pages 651-668.
    5. Wu, Xiao & Xi, Han & Qiu, Ruohan & Lee, Kwang Y., 2023. "Low carbon optimal planning of the steel mill gas utilization system," Applied Energy, Elsevier, vol. 343(C).
    6. Younessi, Hiva Seyed & Bahramara, Salah & Adabi, Farid & Golpîra, Hêmin, 2023. "Modeling the optimal sizing problem of the biogas-based electrical generator in a livestock farm considering a gas storage tank and the anaerobic digester process under the uncertainty of cow dung," Energy, Elsevier, vol. 270(C).
    7. Terfa, H. & Baghli, L. & Bhandari, R., 2022. "Impact of renewable energy micro-power plants on power grids over Africa," Energy, Elsevier, vol. 238(PA).
    8. Das, Pronob & Das, Barun K. & Rahman, Mushfiqur & Hassan, Rakibul, 2022. "Evaluating the prospect of utilizing excess energy and creating employments from a hybrid energy system meeting electricity and freshwater demands using multi-objective evolutionary algorithms," Energy, Elsevier, vol. 238(PB).
    9. El-Sattar, Hoda Abd & Kamel, Salah & Hassan, Mohamed H. & Jurado, Francisco, 2022. "An effective optimization strategy for design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 260(C).
    10. Pereira, Géssica Michelle dos Santos & Weigert, Gabriela Rosalee & Macedo, Pablo Lopes & Silva, Kiane Alves e & Segura Salas, Cresencio Silvio & Gonçalves, Antônio Maurício de Matos & Nascimento, Hebe, 2022. "Quasi-dynamic operation and maintenance plan for photovoltaic systems in remote areas: The framework of Pantanal-MS," Renewable Energy, Elsevier, vol. 181(C), pages 404-416.
    11. Isabelo Rabuya & Melissa Libres & Michael Lochinvar Abundo & Evelyn Taboada, 2021. "Moving Up the Electrification Ladder in Off-Grid Settlements with Rooftop Solar Microgrids," Energies, MDPI, vol. 14(12), pages 1-32, June.
    12. Chinna Alluraiah Nallolla & Vijayapriya Perumal, 2022. "Optimal Design of a Hybrid Off-Grid Renewable Energy System Using Techno-Economic and Sensitivity Analysis for a Rural Remote Location," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    13. Aktas, Ilter Sahin, 2024. "Techno-economic feasibility analysis and optimisation of on/off-grid wind-biogas-CHP hybrid energy system for the electrification of university campus: A case study," Renewable Energy, Elsevier, vol. 237(PC).
    14. Abdul Munim Rehmani & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Muhammad Awais, 2023. "Techno-Economic-Environmental Assessment of an Isolated Rural Micro-Grid from a Mid-Career Repowering Perspective," Sustainability, MDPI, vol. 15(3), pages 1-35, January.
    15. Benoit Mougenot & Jean-Pierre Doussoulin, 2022. "Conceptual evolution of the bioeconomy: a bibliometric analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1031-1047, January.
    16. Sameh Mahjoub & Larbi Chrifi-Alaoui & Saïd Drid & Nabil Derbel, 2023. "Control and Implementation of an Energy Management Strategy for a PV–Wind–Battery Microgrid Based on an Intelligent Prediction Algorithm of Energy Production," Energies, MDPI, vol. 16(4), pages 1-26, February.
    17. Rasha Kassem & Mohamed Metwally Mahmoud & Nagwa F. Ibrahim & Abdulaziz Alkuhayli & Usama Khaled & Abderrahmane Beroual & Hedra Saleeb, 2024. "A Techno-Economic-Environmental Feasibility Study of Residential Solar Photovoltaic/Biomass Power Generation for Rural Electrification: A Real Case Study," Sustainability, MDPI, vol. 16(5), pages 1-24, February.
    18. Merve Nazli Borand & Asli Isler Kaya & Filiz Karaosmanoglu, 2020. "Saccharification Yield through Enzymatic Hydrolysis of the Steam-Exploded Pinewood," Energies, MDPI, vol. 13(17), pages 1-12, September.
    19. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    20. Tay, Zhi Xin & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Varbanov, Petar Sabev, 2024. "Review of best practices for global cogeneration policy: Benchmarking and recommendations for Malaysia," Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7856-:d:1474428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.