IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp1153-1175.html
   My bibliography  Save this article

A multi-criteria approach to designing and managing a renewable energy community

Author

Listed:
  • Tomin, Nikita
  • Shakirov, Vladislav
  • Kurbatsky, Victor
  • Muzychuk, Roman
  • Popova, Ekaterina
  • Sidorov, Denis
  • Kozlov, Alexandr
  • Yang, Dechang

Abstract

The energy communities based on the integration of microgrids make it possible to gain economic, environmental, technical, and social benefits. The paper aims to propose a unified multi-criteria approach covering both the planning stage and the stage of managing the energy community, in the context of various interests of its participants. Planning stage should take into account the long-term goals of the community and possible changes in external conditions. Therefore, we suggest an approach relying on the multi-attribute value theory considering the uncertainty of decision makers' preferences. Interval estimators used to express preferences enable a choice of community configuration with robust performance under changing conditions within some limits. In the operation stage, the new multi-criteria model of an intelligent "energy community operator" is proposed. It is based on bi-level programming and reinforcement learning, implementing the structure of a fair local market for sustainable development of the community. To optimize the operation of individual microgrids within the community, the multi-objective Monte-Carlo Tree Search (MCTS) algorithm is used, which helps to improve the convergence in the Stackelberg game. The multi-criteria version of the MCTS algorithm allows implementing an adaptive local automation model to solve a multi-objective lower-level problem: minimize operating costs, risk of power shortage, and CO2 emissions; smooth load peaks, and optimize power exchange between microgrids. At the top level, a management strategy that will be beneficial to all members of the community is chosen to guarantee their long-term aggregation. The effectiveness of the proposed approach is demonstrated by the example of an energy community created for three remote villages located on the coast of the Sea of Japan. The natural and climatic conditions of the area allow the efficient use of wind, solar, and biomass resources. Building the community involves the consideration of three scenarios, in which priority is given to economic efficiency, environmental efficiency, or balanced development.

Suggested Citation

  • Tomin, Nikita & Shakirov, Vladislav & Kurbatsky, Victor & Muzychuk, Roman & Popova, Ekaterina & Sidorov, Denis & Kozlov, Alexandr & Yang, Dechang, 2022. "A multi-criteria approach to designing and managing a renewable energy community," Renewable Energy, Elsevier, vol. 199(C), pages 1153-1175.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:1153-1175
    DOI: 10.1016/j.renene.2022.08.151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122013295
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walker, Gordon & Devine-Wright, Patrick, 2008. "Community renewable energy: What should it mean," Energy Policy, Elsevier, vol. 36(2), pages 497-500, February.
    2. Yang, Weijia & Sparrow, Sarah N. & Ashtine, Masaō & Wallom, David C.H. & Morstyn, Thomas, 2022. "Resilient by design: Preventing wildfires and blackouts with microgrids," Applied Energy, Elsevier, vol. 313(C).
    3. Liu, Zhijian & Fan, Guangyao & Sun, Dekang & Wu, Di & Guo, Jiacheng & Zhang, Shicong & Yang, Xinyan & Lin, Xianping & Ai, Lei, 2022. "A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings," Energy, Elsevier, vol. 239(PE).
    4. Ullah, Zia & Elkadeem, M.R. & Kotb, Kotb M. & Taha, Ibrahim B.M. & Wang, Shaorong, 2021. "Multi-criteria decision-making model for optimal planning of on/off grid hybrid solar, wind, hydro, biomass clean electricity supply," Renewable Energy, Elsevier, vol. 179(C), pages 885-910.
    5. Ribó-Pérez, David & Herraiz-Cañete, Ángela & Alfonso-Solar, David & Vargas-Salgado, Carlos & Gómez-Navarro, Tomás, 2021. "Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER," Renewable Energy, Elsevier, vol. 174(C), pages 501-512.
    6. Simoiu, Mircea Stefan & Fagarasan, Ioana & Ploix, Stéphane & Calofir, Vasile, 2022. "Modeling the energy community members’ willingness to change their behaviour with multi-agent systems: A stochastic approach," Renewable Energy, Elsevier, vol. 194(C), pages 1233-1246.
    7. Lode, M.L. & te Boveldt, G. & Coosemans, T. & Ramirez Camargo, L., 2022. "A transition perspective on Energy Communities: A systematic literature review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    8. Karimi, Hamid & Jadid, Shahram, 2020. "Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework," Energy, Elsevier, vol. 195(C).
    9. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    10. Totaro, Simone & Boukas, Ioannis & Jonsson, Anders & Cornélusse, Bertrand, 2021. "Lifelong control of off-grid microgrid with model-based reinforcement learning," Energy, Elsevier, vol. 232(C).
    11. Orlando Valarezo & Tomás Gómez & José Pablo Chaves-Avila & Leandro Lind & Mauricio Correa & David Ulrich Ziegler & Rodrigo Escobar, 2021. "Analysis of New Flexibility Market Models in Europe," Energies, MDPI, vol. 14(12), pages 1-24, June.
    12. Pacheco, A. & Monteiro, J. & Santos, J. & Sequeira, C. & Nunes, J., 2022. "Energy transition process and community engagement on geographic islands: The case of Culatra Island (Ria Formosa, Portugal)," Renewable Energy, Elsevier, vol. 184(C), pages 700-711.
    13. Di Lorenzo, Gianfranco & Rotondo, Sara & Araneo, Rodolfo & Petrone, Giovanni & Martirano, Luigi, 2021. "Innovative power-sharing model for buildings and energy communities," Renewable Energy, Elsevier, vol. 172(C), pages 1087-1102.
    14. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Mikulik, Jerzy, 2021. "A hybrid method for scenario-based techno-economic-environmental analysis of off-grid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Cornélusse, Bertrand & Savelli, Iacopo & Paoletti, Simone & Giannitrapani, Antonio & Vicino, Antonio, 2019. "A community microgrid architecture with an internal local market," Applied Energy, Elsevier, vol. 242(C), pages 547-560.
    16. Bauwens, Thomas & Devine-Wright, Patrick, 2018. "Positive energies? An empirical study of community energy participation and attitudes to renewable energy," Energy Policy, Elsevier, vol. 118(C), pages 612-625.
    17. Warneryd, Martin & Håkansson, Maria & Karltorp, Kersti, 2020. "Unpacking the complexity of community microgrids: A review of institutions’ roles for development of microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    18. Guo, Jiacheng & Zhang, Peiwen & Wu, Di & Liu, Zhijian & Liu, Xuan & Zhang, Shicong & Yang, Xinyan & Ge, Hua, 2022. "Multi-objective optimization design and multi-attribute decision-making method of a distributed energy system based on nearly zero-energy community load forecasting," Energy, Elsevier, vol. 239(PC).
    19. Iazzolino, Gianpaolo & Sorrentino, Nicola & Menniti, Daniele & Pinnarelli, Anna & De Carolis, Monica & Mendicino, Luca, 2022. "Energy communities and key features emerged from business models review," Energy Policy, Elsevier, vol. 165(C).
    20. Rogers, Jennifer C. & Simmons, Eunice A. & Convery, Ian & Weatherall, Andrew, 2012. "Social impacts of community renewable energy projects: findings from a woodfuel case study," Energy Policy, Elsevier, vol. 42(C), pages 239-247.
    21. Sima, Catalina Alexandra & Popescu, Claudia Laurenta & Popescu, Mihai Octavian & Roscia, Mariacristina & Seritan, George & Panait, Cornel, 2022. "Techno-economic assessment of university energy communities with on/off microgrid," Renewable Energy, Elsevier, vol. 193(C), pages 538-553.
    22. Schittekatte, Tim & Meeus, Leonardo, 2020. "Flexibility markets: Q&A with project pioneers," Utilities Policy, Elsevier, vol. 63(C).
    23. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    24. Hou, Qingchun & Zhang, Ning & Du, Ershun & Miao, Miao & Peng, Fei & Kang, Chongqing, 2019. "Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China," Applied Energy, Elsevier, vol. 242(C), pages 205-215.
    25. Bertrand Corn'elusse & Iacopo Savelli & Simone Paoletti & Antonio Giannitrapani & Antonio Vicino, 2018. "A Community Microgrid Architecture with an Internal Local Market," Papers 1810.09803, arXiv.org, revised Feb 2019.
    26. Tomin, Nikita & Shakirov, Vladislav & Kozlov, Aleksander & Sidorov, Denis & Kurbatsky, Victor & Rehtanz, Christian & Lora, Electo E.S., 2022. "Design and optimal energy management of community microgrids with flexible renewable energy sources," Renewable Energy, Elsevier, vol. 183(C), pages 903-921.
    27. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paola Marrone & Federico Fiume & Antonino Laudani & Ilaria Montella & Martina Palermo & Francesco Riganti Fulginei, 2023. "Distributed Energy Systems: Constraints and Opportunities in Urban Environments," Energies, MDPI, vol. 16(6), pages 1-27, March.
    2. Zhou, Yuekuan, 2023. "Sustainable energy sharing districts with electrochemical battery degradation in design, planning, operation and multi-objective optimisation," Renewable Energy, Elsevier, vol. 202(C), pages 1324-1341.
    3. Corsini, Alessandro & Delibra, Giovanni & Pizzuti, Isabella & Tajalli-Ardekani, Erfan, 2023. "Challenges of renewable energy communities on small Mediterranean islands: A case study on Ponza island," Renewable Energy, Elsevier, vol. 215(C).
    4. Bin Zhang & Li Sun & Mengyao Yang & Kin-Keung Lai & Bhagwat Ram, 2023. "A Robust Optimization Approach for Smart Energy Market Revenue Management," Energies, MDPI, vol. 16(19), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sima, Catalina Alexandra & Popescu, Claudia Laurenta & Popescu, Mihai Octavian & Roscia, Mariacristina & Seritan, George & Panait, Cornel, 2022. "Techno-economic assessment of university energy communities with on/off microgrid," Renewable Energy, Elsevier, vol. 193(C), pages 538-553.
    2. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    3. Heilmann, Jakob & Wensaas, Marthe & Crespo del Granado, Pedro & Hashemipour, Naser, 2022. "Trading algorithms to represent the wholesale market of energy communities in Norway and England," Renewable Energy, Elsevier, vol. 200(C), pages 1426-1437.
    4. Simoiu, Mircea Stefan & Fagarasan, Ioana & Ploix, Stéphane & Calofir, Vasile, 2022. "Modeling the energy community members’ willingness to change their behaviour with multi-agent systems: A stochastic approach," Renewable Energy, Elsevier, vol. 194(C), pages 1233-1246.
    5. Gayo-Abeleira, Miguel & Santos, Carlos & Javier Rodríguez Sánchez, Francisco & Martín, Pedro & Antonio Jiménez, José & Santiso, Enrique, 2022. "Aperiodic two-layer energy management system for community microgrids based on blockchain strategy," Applied Energy, Elsevier, vol. 324(C).
    6. Nuñez-Jimenez, Alejandro & Mehta, Prakhar & Griego, Danielle, 2023. "Let it grow: How community solar policy can increase PV adoption in cities," Energy Policy, Elsevier, vol. 175(C).
    7. Fioriti, Davide & Frangioni, Antonio & Poli, Davide, 2021. "Optimal sizing of energy communities with fair revenue sharing and exit clauses: Value, role and business model of aggregators and users," Applied Energy, Elsevier, vol. 299(C).
    8. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    9. Lisa Hanna Broska & Stefan Vögele & Hawal Shamon & Inga Wittenberg, 2022. "On the Future(s) of Energy Communities in the German Energy Transition: A Derivation of Transformation Pathways," Sustainability, MDPI, vol. 14(6), pages 1-31, March.
    10. Petrovich, Beatrice & Kubli, Merla, 2023. "Energy communities for companies: Executives’ preferences for local and renewable energy procurement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    11. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    12. Alexandros-Georgios Chronis & Foivos Palaiogiannis & Iasonas Kouveliotis-Lysikatos & Panos Kotsampopoulos & Nikos Hatziargyriou, 2021. "Photovoltaics Enabling Sustainable Energy Communities: Technological Drivers and Emerging Markets," Energies, MDPI, vol. 14(7), pages 1-21, March.
    13. Bauwens, Thomas & Schraven, Daan & Drewing, Emily & Radtke, Jörg & Holstenkamp, Lars & Gotchev, Boris & Yildiz, Özgür, 2022. "Conceptualizing community in energy systems: A systematic review of 183 definitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Herenčić, Lin & Kirac, Mislav & Keko, Hrvoje & Kuzle, Igor & Rajšl, Ivan, 2022. "Automated energy sharing in MV and LV distribution grids within an energy community: A case for Croatian city of Križevci with a hybrid renewable system," Renewable Energy, Elsevier, vol. 191(C), pages 176-194.
    15. Mustika, Alyssa Diva & Rigo-Mariani, Rémy & Debusschere, Vincent & Pachurka, Amaury, 2022. "A two-stage management strategy for the optimal operation and billing in an energy community with collective self-consumption," Applied Energy, Elsevier, vol. 310(C).
    16. Volpato, Gabriele & Carraro, Gianluca & Cont, Marco & Danieli, Piero & Rech, Sergio & Lazzaretto, Andrea, 2022. "General guidelines for the optimal economic aggregation of prosumers in energy communities," Energy, Elsevier, vol. 258(C).
    17. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    18. Hogan, Jessica L. & Warren, Charles R. & Simpson, Michael & McCauley, Darren, 2022. "What makes local energy projects acceptable? Probing the connection between ownership structures and community acceptance," Energy Policy, Elsevier, vol. 171(C).
    19. Klein, Sharon J.W. & Coffey, Stephanie, 2016. "Building a sustainable energy future, one community at a time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 867-880.
    20. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:1153-1175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.