IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v270y2023ics0360544223002700.html
   My bibliography  Save this article

Modeling the optimal sizing problem of the biogas-based electrical generator in a livestock farm considering a gas storage tank and the anaerobic digester process under the uncertainty of cow dung

Author

Listed:
  • Younessi, Hiva Seyed
  • Bahramara, Salah
  • Adabi, Farid
  • Golpîra, Hêmin

Abstract

Cow dung is the main source of producing methane, as one of the greenhouse gases. To decrease this pollution, cow dung can be transformed into biogas, and consequently, the produced biogas can be used as a fuel for electrical generators. This problem is addressed in the so far researches without proposing the appropriate mathematical models. In this paper, the optimal sizing problem of the biogas-based generators (BGs) is formulated for a livestock farm by modeling the anaerobic digester process and the gas storage tank. To protect the system operator's decisions against the uncertainty of the cow dung, the proposed model is reformulated as a risk-based model using the information gap decision theory. The obtained capacity of the BG and the storage tank for a livestock farm with 2000 cows are 433.24 kW and 628.056 m3, respectively. Also, the designed system prevents releasing approximately 522-ton pollution. The results show the appropriate performance of the system operator to use the produced gas to be directly sent to the BG and/or to charge the storage tank. The results show that with increasing the risk-aversion parameter, the capacity of the BG and the storage tank decrease which leads to decreasing the total profit.

Suggested Citation

  • Younessi, Hiva Seyed & Bahramara, Salah & Adabi, Farid & Golpîra, Hêmin, 2023. "Modeling the optimal sizing problem of the biogas-based electrical generator in a livestock farm considering a gas storage tank and the anaerobic digester process under the uncertainty of cow dung," Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002700
    DOI: 10.1016/j.energy.2023.126876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223002700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kirim, Yavuz & Sadikoglu, Hasan & Melikoglu, Mehmet, 2022. "Technical and economic analysis of biogas and solar photovoltaic (PV) hybrid renewable energy system for dairy cattle barns," Renewable Energy, Elsevier, vol. 188(C), pages 873-889.
    2. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    3. Pal, Ankit & Bhattacharjee, Subhadeep, 2020. "Effectuation of biogas based hybrid energy system for cost-effective decentralized application in small rural community," Energy, Elsevier, vol. 203(C).
    4. Jahangir, Mohammad Hossein & Montazeri, Mohammad & Mousavi, Seyed Ali & Kargarzadeh, Arash, 2022. "Reducing carbon emissions of industrial large livestock farms using hybrid renewable energy systems," Renewable Energy, Elsevier, vol. 189(C), pages 52-65.
    5. Wegener, Moritz & Villarroel Schneider, J. & Malmquist, Anders & Isalgue, Antonio & Martin, Andrew & Martin, Viktoria, 2021. "Techno-economic optimization model for polygeneration hybrid energy storage systems using biogas and batteries," Energy, Elsevier, vol. 218(C).
    6. Ji, Ling & Liang, Xiaolin & Xie, Yulei & Huang, Guohe & Wang, Bing, 2021. "Optimal design and sensitivity analysis of the stand-alone hybrid energy system with PV and biomass-CHP for remote villages," Energy, Elsevier, vol. 225(C).
    7. Sanni, Shereefdeen Oladapo & Oricha, Joseph Yakubu & Oyewole, Taoheed Oluwafemi & Bawonda, Femi Ikotoni, 2021. "Analysis of backup power supply for unreliable grid using hybrid solar PV/diesel/biogas system," Energy, Elsevier, vol. 227(C).
    8. Ribó-Pérez, David & Herraiz-Cañete, Ángela & Alfonso-Solar, David & Vargas-Salgado, Carlos & Gómez-Navarro, Tomás, 2021. "Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER," Renewable Energy, Elsevier, vol. 174(C), pages 501-512.
    9. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mousavi, Seyed Ali & Toopshekan, Ashkan & Mehrpooya, Mehdi & Delpisheh, Mostafa, 2023. "Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems," Renewable Energy, Elsevier, vol. 210(C), pages 40-63.
    2. Demirci, Alpaslan & Akar, Onur & Ozturk, Zafer, 2022. "Technical-environmental-economic evaluation of biomass-based hybrid power system with energy storage for rural electrification," Renewable Energy, Elsevier, vol. 195(C), pages 1202-1217.
    3. Sanni, Shereefdeen Oladapo & Oricha, Joseph Yakubu & Oyewole, Taoheed Oluwafemi & Bawonda, Femi Ikotoni, 2021. "Analysis of backup power supply for unreliable grid using hybrid solar PV/diesel/biogas system," Energy, Elsevier, vol. 227(C).
    4. Bagheri, Mehdi & Delbari, Seyed Hamid & Pakzadmanesh, Mina & Kennedy, Christopher A., 2019. "City-integrated renewable energy design for low-carbon and climate-resilient communities," Applied Energy, Elsevier, vol. 239(C), pages 1212-1225.
    5. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    6. Tamal Chowdhury & Samiul Hasan & Hemal Chowdhury & Abul Hasnat & Ahmad Rashedi & M. R. M. Asyraf & Mohamad Zaki Hassan & Sadiq M. Sait, 2022. "Sizing of an Island Standalone Hybrid System Considering Economic and Environmental Parameters: A Case Study," Energies, MDPI, vol. 15(16), pages 1-22, August.
    7. Pal, Pikaso & Mukherjee, V., 2021. "Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: An investigation based on techno-economic feasibility assessment for the application of end-user load demand in N," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Laetitia Uwineza & Hyun-Goo Kim & Jan Kleissl & Chang Ki Kim, 2022. "Technical Control and Optimal Dispatch Strategy for a Hybrid Energy System," Energies, MDPI, vol. 15(8), pages 1-19, April.
    9. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Mendecka, Barbara & Chiappini, Daniele & Tribioli, Laura & Cozzolino, Raffaello, 2021. "A biogas-solar based hybrid off-grid power plant with multiple storages for United States commercial buildings," Renewable Energy, Elsevier, vol. 179(C), pages 705-722.
    11. Ribó-Pérez, David & Herraiz-Cañete, Ángela & Alfonso-Solar, David & Vargas-Salgado, Carlos & Gómez-Navarro, Tomás, 2021. "Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER," Renewable Energy, Elsevier, vol. 174(C), pages 501-512.
    12. Ahmad, Jameel & Imran, Muhammad & Khalid, Abdullah & Iqbal, Waseem & Ashraf, Syed Rehan & Adnan, Muhammad & Ali, Syed Farooq & Khokhar, Khawar Siddique, 2018. "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, Elsevier, vol. 148(C), pages 208-234.
    13. Akbas, Beste & Kocaman, Ayse Selin & Nock, Destenie & Trotter, Philipp A., 2022. "Rural electrification: An overview of optimization methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Baruah, Abhinandan & Basu, Mousumi & Amuley, Deeshank, 2021. "Modeling of an autonomous hybrid renewable energy system for electrification of a township: A case study for Sikkim, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Jahangir, Mohammad Hossein & Montazeri, Mohammad & Mousavi, Seyed Ali & Kargarzadeh, Arash, 2022. "Reducing carbon emissions of industrial large livestock farms using hybrid renewable energy systems," Renewable Energy, Elsevier, vol. 189(C), pages 52-65.
    16. Bagheri, Mehdi & Shirzadi, Navid & Bazdar, Elahe & Kennedy, Christopher A., 2018. "Optimal planning of hybrid renewable energy infrastructure for urban sustainability: Green Vancouver," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 254-264.
    17. Li, Jinze & Liu, Pei & Li, Zheng, 2020. "Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China," Energy, Elsevier, vol. 208(C).
    18. Wesam H. Beitelmal & Paul C. Okonkwo & Fadhil Al Housni & Wael Alruqi & Omar Alruwaythi, 2020. "Accessibility and Sustainability of Hybrid Energy Systems for a Cement Factory in Oman," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    19. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    20. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.