IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v317y2025ics0360544225003317.html
   My bibliography  Save this article

Optimization and economic analysis of hybrid renewable energy system

Author

Listed:
  • Rajbongshi, Rumi
  • Rajkumari, Antariksha

Abstract

The dwindling of fossil fuels and pollution-driven climate change, combined with rising energy demands, make a shift to renewable energy, which is essential for future electricity generation. This study assesses the feasibility of developing a hybrid renewable energy system to meet the electricity demand for the state of Assam (India). For this study, a hybrid system consisting of solar photovoltaic (PV), a wind turbine, a diesel generator (DG), converter and a battery bank are considered. A large load like a hostel in Tezpur (Assam) and a small domestic load in Guwahati (Assam) are studied. The most optimum off grid and grid connected hybrid models with the least cost of energy (COE) are found out using HOMER software. The hybrid system comprising of PV, DG, battery, converter gives the optimum off-grid system configuration with COE of ₹ 10.66/kWh for hostel and ₹ 12.48/kWh for household. The optimal results obtained are validated using an optimization technique. The COE of grid connected optimum hybrid system for hostel and household is ₹ 6.93/kWh and ₹ 4.72/kWh respectively. The economic analysis and the environmental impact assessment proved that grid connected hybrid system is the most environmentally and economically viable option for electricity generation in Assam.

Suggested Citation

  • Rajbongshi, Rumi & Rajkumari, Antariksha, 2025. "Optimization and economic analysis of hybrid renewable energy system," Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225003317
    DOI: 10.1016/j.energy.2025.134689
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225003317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kirim, Yavuz & Sadikoglu, Hasan & Melikoglu, Mehmet, 2022. "Technical and economic analysis of biogas and solar photovoltaic (PV) hybrid renewable energy system for dairy cattle barns," Renewable Energy, Elsevier, vol. 188(C), pages 873-889.
    2. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    3. Babajide, Abisoye & Brito, Miguel Centeno, 2021. "Solar PV systems to eliminate or reduce the use of diesel generators at no additional cost: A case study of Lagos, Nigeria," Renewable Energy, Elsevier, vol. 172(C), pages 209-218.
    4. Sanni, Shereefdeen Oladapo & Oricha, Joseph Yakubu & Oyewole, Taoheed Oluwafemi & Bawonda, Femi Ikotoni, 2021. "Analysis of backup power supply for unreliable grid using hybrid solar PV/diesel/biogas system," Energy, Elsevier, vol. 227(C).
    5. Tang, Ou & Rehme, Jakob & Cerin, Pontus, 2022. "Levelized cost of hydrogen for refueling stations with solar PV and wind in Sweden: On-grid or off-grid?," Energy, Elsevier, vol. 241(C).
    6. Yadav, Subhash & Kumar, Pradeep & Kumar, Ashwani, 2024. "Techno-economic assessment of hybrid renewable energy system with multi energy storage system using HOMER," Energy, Elsevier, vol. 297(C).
    7. Chaurey, A. & Kandpal, T.C., 2010. "A techno-economic comparison of rural electrification based on solar home systems and PV microgrids," Energy Policy, Elsevier, vol. 38(6), pages 3118-3129, June.
    8. Cao, Yan & Taslimi, Melika S. & Dastjerdi, Sajad Maleki & Ahmadi, Pouria & Ashjaee, Mehdi, 2022. "Design, dynamic simulation, and optimal size selection of a hybrid solar/wind and battery-based system for off-grid energy supply," Renewable Energy, Elsevier, vol. 187(C), pages 1082-1099.
    9. Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mousavi, Seyed Ali & Toopshekan, Ashkan & Mehrpooya, Mehdi & Delpisheh, Mostafa, 2023. "Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems," Renewable Energy, Elsevier, vol. 210(C), pages 40-63.
    2. Younessi, Hiva Seyed & Bahramara, Salah & Adabi, Farid & Golpîra, Hêmin, 2023. "Modeling the optimal sizing problem of the biogas-based electrical generator in a livestock farm considering a gas storage tank and the anaerobic digester process under the uncertainty of cow dung," Energy, Elsevier, vol. 270(C).
    3. Assouo, Thierry & Lontsi, Frederic & Boupda, Orelien & Koholé, Yemeli Wenceslas & Njitacke, Zeric Tabekoueng, 2025. "Modeling and techno-economic study of a hybrid renewable energy power plant for electrification in rural areas with an equatorial climate," Energy, Elsevier, vol. 320(C).
    4. Tamal Chowdhury & Samiul Hasan & Hemal Chowdhury & Abul Hasnat & Ahmad Rashedi & M. R. M. Asyraf & Mohamad Zaki Hassan & Sadiq M. Sait, 2022. "Sizing of an Island Standalone Hybrid System Considering Economic and Environmental Parameters: A Case Study," Energies, MDPI, vol. 15(16), pages 1-22, August.
    5. Li, Huan & Alaküla, Mats, 2024. "The optimal capacity expansion planning for the terminals of the logistics company," Applied Energy, Elsevier, vol. 374(C).
    6. Mohtasim, Md. Shahriar & Das, Barun K. & Paul, Utpol K. & Kibria, Md. Golam & Hossain, Md Sanowar, 2025. "Hybrid renewable multi-generation system optimization: Attaining sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    7. Ghaithan, Ahmed M., 2024. "Multi-objective model for designing hydrogen refueling station powered using on-grid photovoltaic-wind system," Energy, Elsevier, vol. 312(C).
    8. Li, Jinze & Liu, Pei & Zhang, Guosheng & Liu, He, 2025. "Optimal planning and feasibility analysis of a grid-connected PV-biomass hybrid renewable energy system for rural electrification with electric vehicles: A case study of Hainan, China," Energy, Elsevier, vol. 324(C).
    9. Motamedisedeh, Omid & Omrani, Sara & Karim, Azharul & Drogemuller, Robin & Walker, Geoffrey, 2025. "A comprehensive review of optimum integration of photovoltaic-based energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    10. Demirci, Alpaslan & Akar, Onur & Ozturk, Zafer, 2022. "Technical-environmental-economic evaluation of biomass-based hybrid power system with energy storage for rural electrification," Renewable Energy, Elsevier, vol. 195(C), pages 1202-1217.
    11. Dodo, Usman Alhaji & Salami, Babatunde Abiodun & Bashir, Faizah Mohammed & Hamdoun, Haifa Youssef & Rashed Alsadun, Ibtihaj Saad & Dodo, Yakubu Aminu & Usman, A.G. & Abba, Sani I., 2024. "Investigating the influence of erratic grid on stationary battery energy storage technologies in hybrid power systems: Techno-environ-economic perspectives," Energy, Elsevier, vol. 304(C).
    12. Paul Njock, Julbin & Thierry Sosso, Olivier & Stouffs, Pascal & Nzengwa, Robert, 2022. "A comparative energy analysis of idealized cycles using an ammonia-water mixture for combined power/cooling," Energy, Elsevier, vol. 261(PA).
    13. Pal, Ankit & Ilango, G. Saravana, 2024. "Design and techno-economic analysis of an off-grid integrated PV-biogas system with a constant temperature digester for a cost-effective rural application," Energy, Elsevier, vol. 287(C).
    14. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    15. Taofeek Afolabi & Hooman Farzaneh, 2023. "Optimal Design and Operation of an Off-Grid Hybrid Renewable Energy System in Nigeria’s Rural Residential Area, Using Fuzzy Logic and Optimization Techniques," Sustainability, MDPI, vol. 15(4), pages 1-33, February.
    16. Díaz, P. & Peña, R. & Muñoz, J. & Arias, C.A. & Sandoval, D., 2011. "Field analysis of solar PV-based collective systems for rural electrification," Energy, Elsevier, vol. 36(5), pages 2509-2516.
    17. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    18. Qin, Hu & Moriakin, Anton & Xu, Gangyan & Li, Jiliu, 2024. "The generator distribution problem for base stations during emergency power outage: A branch-and-price-and-cut approach," European Journal of Operational Research, Elsevier, vol. 318(3), pages 752-767.
    19. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    20. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225003317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.