IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v201y2020ics0360544220305983.html
   My bibliography  Save this article

Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach

Author

Listed:
  • Ustaoglu, Abid

Abstract

Advanced exergy analysis was carried out for absorption-compression refrigeration-cycles with a working fluid selection and parametric analysis. The exergy-destruction was split into endogenous-exogenous and avoidable-unavoidable-parts to reveal the interdependency within the components and determine the improvement potential. The results show that the largest exergy-destruction occurs in the generator, accounting for 53.8% of the total destruction. The largest irreversibility occurs for R507a/NH3–H2O while the lowest destruction occurs for R152a/NH3–H2O with an approximate reduction of 0.62 kW. The largest irreversibility occurs in the azeotropic-fluids while the lowest occurs in wet fluids. More than one-half of overall exergy-destruction rates of the systems falls into the part of the avoidable-destruction with 52.5% of overall irreversibility. The major part of the avoidable-destruction occurs in the generator with 11.47 kW and it accounts for 57.8% of the total avoidable part, meaning that it has the highest improvement potential. The parametric analysis of the advanced exergy shows that the avoidable-part of the exergy-destruction can be minimized to a considerable extent employing a temperature of the condenser below 40 °C and generator temperature larger from 100 °C.

Suggested Citation

  • Ustaoglu, Abid, 2020. "Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach," Energy, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220305983
    DOI: 10.1016/j.energy.2020.117491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220305983
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    2. Gong, Sunyoung & Goni Boulama, Kiari, 2014. "Parametric study of an absorption refrigeration machine using advanced exergy analysis," Energy, Elsevier, vol. 76(C), pages 453-467.
    3. Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Carassai, Anna, 2012. "Conventional and advanced exergetic analyses applied to a combined cycle power plant," Energy, Elsevier, vol. 41(1), pages 146-152.
    4. Şencan, Arzu & Yakut, Kemal A. & Kalogirou, Soteris A., 2005. "Exergy analysis of lithium bromide/water absorption systems," Renewable Energy, Elsevier, vol. 30(5), pages 645-657.
    5. Selbaş, Reşat & Kızılkan, Önder & Şencan, Arzu, 2006. "Thermoeconomic optimization of subcooled and superheated vapor compression refrigeration cycle," Energy, Elsevier, vol. 31(12), pages 2108-2128.
    6. Bai, Tao & Yu, Jianlin & Yan, Gang, 2016. "Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector," Energy, Elsevier, vol. 113(C), pages 385-398.
    7. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    8. Morosuk, T. & Tsatsaronis, G., 2009. "Advanced exergetic evaluation of refrigeration machines using different working fluids," Energy, Elsevier, vol. 34(12), pages 2248-2258.
    9. Xu, Feng & Goswami, D.Yogi, 1999. "Thermodynamic properties of ammonia–water mixtures for power-cycle applications," Energy, Elsevier, vol. 24(6), pages 525-536.
    10. Li, Yongliang & Wang, Xiang & Li, Dacheng & Ding, Yulong, 2012. "A trigeneration system based on compressed air and thermal energy storage," Applied Energy, Elsevier, vol. 99(C), pages 316-323.
    11. Morosuk, Tatiana & Tsatsaronis, George, 2008. "A new approach to the exergy analysis of absorption refrigeration machines," Energy, Elsevier, vol. 33(6), pages 890-907.
    12. Chen, Jianyong & Havtun, Hans & Palm, Björn, 2015. "Conventional and advanced exergy analysis of an ejector refrigeration system," Applied Energy, Elsevier, vol. 144(C), pages 139-151.
    13. Medrano, M. & Bourouis, M. & Coronas, A., 2001. "Double-lift absorption refrigeration cycles driven by low-temperature heat sources using organic fluid mixtures as working pairs," Applied Energy, Elsevier, vol. 68(2), pages 173-185, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Lili & Zhao, Jun & Teng, Junfeng & Dong, Shilong & Wang, Yinglong & Xiang, Shuguang & Sun, Xiaoyan, 2022. "Study on an energy-saving process for separation ethylene elycol mixture through heat-pump, heat-integration and ORC driven by waste-heat," Energy, Elsevier, vol. 243(C).
    2. Li, Longquan & Liu, Zhiqiang & Deng, Chengwei & Ren, Jingzheng & Ji, Feng & Sun, Yi & Xiao, Zhenyu & Yang, Sheng, 2021. "Conventional and advanced exergy analyses of a vehicular proton exchange membrane fuel cell power system," Energy, Elsevier, vol. 222(C).
    3. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    4. Chen, Lintao & Xiao, Kai & Hu, Fan & Li, Yajun, 2022. "Performance evaluation and optimization design of integrated energy system based on thermodynamic, exergoeconomic, and exergoenvironmental analyses," Applied Energy, Elsevier, vol. 326(C).
    5. Bo Shen & Moonis R. Ally, 2020. "Energy and Exergy Analysis of Low-Global Warming Potential Refrigerants as Replacement for R410A in Two-Speed Heat Pumps for Cold Climates," Energies, MDPI, vol. 13(21), pages 1-18, October.
    6. Aghaziarati, Zeinab & Aghdam, Abolfazl Hajizadeh, 2021. "Thermoeconomic analysis of a novel combined cooling, heating and power system based on solar organic Rankine cycle and cascade refrigeration cycle," Renewable Energy, Elsevier, vol. 164(C), pages 1267-1283.
    7. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    2. Zhao, Hongxia & Yuan, Tianpeng & Gao, Jia & Wang, Xinli & Yan, Jia, 2019. "Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290," Energy, Elsevier, vol. 166(C), pages 845-861.
    3. Chen, Jianyong & Havtun, Hans & Palm, Björn, 2015. "Conventional and advanced exergy analysis of an ejector refrigeration system," Applied Energy, Elsevier, vol. 144(C), pages 139-151.
    4. Şöhret, Yasin & Açıkkalp, Emin & Hepbasli, Arif & Karakoc, T. Hikmet, 2015. "Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts," Energy, Elsevier, vol. 90(P2), pages 1219-1228.
    5. Erbay, Zafer & Hepbasli, Arif, 2017. "Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method," Energy, Elsevier, vol. 127(C), pages 502-515.
    6. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
    7. He, Qing & Liu, Hui & Hao, Yinping & Liu, Yaning & Liu, Wenyi, 2018. "Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis," Renewable Energy, Elsevier, vol. 127(C), pages 835-849.
    8. Ebrahimi, Mehdi & Carriveau, Rupp & Ting, David S.-K. & McGillis, Andrew, 2019. "Conventional and advanced exergy analysis of a grid connected underwater compressed air energy storage facility," Applied Energy, Elsevier, vol. 242(C), pages 1198-1208.
    9. Anvari, Simin & Khoshbakhti Saray, Rahim & Bahlouli, Keyvan, 2015. "Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production," Energy, Elsevier, vol. 91(C), pages 925-939.
    10. Bai, Tao & Yu, Jianlin & Yan, Gang, 2016. "Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector," Energy, Elsevier, vol. 113(C), pages 385-398.
    11. Gebreslassie, Berhane H. & Medrano, Marc & Boer, Dieter, 2010. "Exergy analysis of multi-effect water–LiBr absorption systems: From half to triple effect," Renewable Energy, Elsevier, vol. 35(8), pages 1773-1782.
    12. Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Advanced exergy analysis of an air conditioning system incorporating thermal energy storage," Energy, Elsevier, vol. 77(C), pages 945-952.
    13. Gong, Sunyoung & Goni Boulama, Kiari, 2014. "Parametric study of an absorption refrigeration machine using advanced exergy analysis," Energy, Elsevier, vol. 76(C), pages 453-467.
    14. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
    15. Keçebaş, Ali & Gökgedik, Harun, 2015. "Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis," Energy, Elsevier, vol. 88(C), pages 746-755.
    16. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    17. Mohammadi, Z. & Fallah, M. & Mahmoudi, S.M. Seyed, 2019. "Advanced exergy analysis of recompression supercritical CO2 cycle," Energy, Elsevier, vol. 178(C), pages 631-643.
    18. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    19. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
    20. Cao, Yan & Rostamian, Fateme & Ebadollahi, Mohammad & Bezaatpour, Mojtaba & Ghaebi, Hadi, 2022. "Advanced exergy assessment of a solar absorption power cycle," Renewable Energy, Elsevier, vol. 183(C), pages 561-574.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220305983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.