IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v68y2001i2p173-185.html
   My bibliography  Save this article

Double-lift absorption refrigeration cycles driven by low-temperature heat sources using organic fluid mixtures as working pairs

Author

Listed:
  • Medrano, M.
  • Bourouis, M.
  • Coronas, A.

Abstract

At present, much interest is being shown in absorption refrigeration cycles driven by low temperature heat sources, such as solar energy or low-grade waste-heat. Double-lift absorption cycles working with ammonia-water have been recommended for refrigeration applications which require cold at 0°C and which are activated by waste heat between 70 and 100°C. This paper discusses the potential of the organic fluid mixtures trifluoroethanol (TFE)-tetraethylenglycol dimethylether (TEGDME or E181) and methanol-TEGDME as working pairs in series flow and vapour exchange double-lift absorption cycles. The ammonia-water mixture was used for comparison purposes. The results show that the performances of these cycles improve significantly when they have the above mentioned organic fluid mixtures as working pairs. For example, the coefficient of performance of the vapour exchange cycle working with TFE-TEGDME is 15% higher than with ammonia-water. In this study, we used a modular software package, which we developed for the thermodynamic properties and cycles simulation of absorption systems.

Suggested Citation

  • Medrano, M. & Bourouis, M. & Coronas, A., 2001. "Double-lift absorption refrigeration cycles driven by low-temperature heat sources using organic fluid mixtures as working pairs," Applied Energy, Elsevier, vol. 68(2), pages 173-185, February.
  • Handle: RePEc:eee:appene:v:68:y:2001:i:2:p:173-185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(00)00048-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lisong Wang & Lijuan He & Yijian He, 2024. "Review on Absorption Refrigeration Technology and Its Potential in Energy-Saving and Carbon Emission Reduction in Natural Gas and Hydrogen Liquefaction," Energies, MDPI, vol. 17(14), pages 1-51, July.
    2. Qasem, Naef A.A. & Zubair, Syed M. & Abdallah, Ayman M. & Elbassoussi, Muhammad H. & Ahmed, Mohamed A., 2020. "Novel and efficient integration of a humidification-dehumidification desalination system with an absorption refrigeration system," Applied Energy, Elsevier, vol. 263(C).
    3. Sun, Jian & Fu, Lin & Zhang, Shigang, 2012. "A review of working fluids of absorption cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1899-1906.
    4. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    5. Ustaoglu, Abid, 2020. "Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach," Energy, Elsevier, vol. 201(C).
    6. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
    7. Comakli, K. & Simsek, F. & Comakli, O. & Sahin, B., 2009. "Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method," Applied Energy, Elsevier, vol. 86(11), pages 2451-2458, November.
    8. Rameshkumar, A. & Udayakumar, M. & Saravanan, R., 2009. "Heat transfer studies on a GAXAC (generator-absorber-exchange absorption compression) cooler," Applied Energy, Elsevier, vol. 86(10), pages 2056-2064, October.
    9. Li, Gang & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2013. "Review of cold storage materials for subzero applications," Energy, Elsevier, vol. 51(C), pages 1-17.
    10. Hong, D.L. & Chen, G.M. & Tang, L.M. & He, Y.J., 2011. "Simulation research on an EAX (Evaporator-Absorber-Exchange) absorption refrigeration cycle," Energy, Elsevier, vol. 36(1), pages 94-98.
    11. Le Lostec, Brice & Galanis, Nicolas & Baribeault, Jean & Millette, Jocelyn, 2008. "Wood chip drying with an absorption heat pump," Energy, Elsevier, vol. 33(3), pages 500-512.
    12. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    13. Yiqun Li & Na Li & Chunhuan Luo & Qingquan Su, 2019. "Thermodynamic Performance of a Double-Effect Absorption Refrigeration Cycle Based on a Ternary Working Pair: Lithium Bromide + Ionic Liquids + Water," Energies, MDPI, vol. 12(21), pages 1-21, November.
    14. Said, S.A.M. & El-Shaarawi, M.A.I. & Siddiqui, M.U., 2013. "Intermittent absorption refrigeration system equipped with an economizer," Energy, Elsevier, vol. 61(C), pages 332-344.
    15. Ding, Zhixiong & Wu, Wei, 2022. "Type II absorption thermal battery for temperature upgrading: Energy storage heat transformer," Applied Energy, Elsevier, vol. 324(C).
    16. Kalmár, László & Medgyes, Tamás & Szanyi, János, 2020. "Specifying boundary conditions for economical closed loop deep geothermal heat production," Energy, Elsevier, vol. 196(C).
    17. Wu, Wei & Shi, Wenxing & Wang, Jian & Wang, Baolong & Li, Xianting, 2016. "Experimental investigation on NH3–H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources," Applied Energy, Elsevier, vol. 176(C), pages 258-271.
    18. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    19. Wang, Hailei & Peterson, Richard & Herron, Tom, 2011. "Design study of configurations on system COP for a combined ORC (organic Rankine cycle) and VCC (vapor compression cycle)," Energy, Elsevier, vol. 36(8), pages 4809-4820.
    20. Papadopoulos, Athanasios I. & Kyriakides, Alexios-Spyridon & Seferlis, Panos & Hassan, Ibrahim, 2019. "Absorption refrigeration processes with organic working fluid mixtures- a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 239-270.
    21. Fan, Y. & Luo, L. & Souyri, B., 2007. "Review of solar sorption refrigeration technologies: Development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1758-1775, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:68:y:2001:i:2:p:173-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.