IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i10p2056-2064.html
   My bibliography  Save this article

Heat transfer studies on a GAXAC (generator-absorber-exchange absorption compression) cooler

Author

Listed:
  • Rameshkumar, A.
  • Udayakumar, M.
  • Saravanan, R.

Abstract

A detailed heat transfer model of GAXAC (generator-absorber-exchange absorption compression) cycle using ammonia-water as working fluid is reported. The effect of UA (heat transfer conductance, kW/K) of each component on COP and cycle capacity is investigated. The results show that UA of the absorber and high temperature generator (HTG) have significant impact on COP and cycle capacity. For a capacity of 11.56Â kW, the maximized COP with minimum UA value for all heat exchanging components is found to be 1.185. Further the effect of mass flow rate and inlet temperatures of hot fluid, chilled water and cooling water are also investigated.

Suggested Citation

  • Rameshkumar, A. & Udayakumar, M. & Saravanan, R., 2009. "Heat transfer studies on a GAXAC (generator-absorber-exchange absorption compression) cooler," Applied Energy, Elsevier, vol. 86(10), pages 2056-2064, October.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:10:p:2056-2064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00035-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Y.T & Akisawa, A & Sambe, Y & Kashiwagi, T, 2000. "Absorption heat pump systems for solution transportation at ambient temperature — STA cycle," Energy, Elsevier, vol. 25(4), pages 355-370.
    2. Yoon, Jung-In & Kwon, Oh-Kyung, 1999. "Cycle analysis of air-cooled absorption chiller using a new working solution," Energy, Elsevier, vol. 24(9), pages 795-809.
    3. Ramesh kumar, A. & Udayakumar, M., 2008. "Studies of compressor pressure ratio effect on GAXAC (generator-absorber-exchange absorption compression) cooler," Applied Energy, Elsevier, vol. 85(12), pages 1163-1172, December.
    4. Wu, Shenyi & Eames, Ian W., 2000. "Innovations in vapour-absorption cycles," Applied Energy, Elsevier, vol. 66(3), pages 251-266, July.
    5. Medrano, M. & Bourouis, M. & Coronas, A., 2001. "Double-lift absorption refrigeration cycles driven by low-temperature heat sources using organic fluid mixtures as working pairs," Applied Energy, Elsevier, vol. 68(2), pages 173-185, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ventas, R. & Vereda, C. & Lecuona, A. & Venegas, M., 2012. "Experimental study of a thermochemical compressor for an absorption/compression hybrid cycle," Applied Energy, Elsevier, vol. 97(C), pages 297-304.
    2. Yari, Mortaza & Zarin, Arash & Mahmoudi, S.M.S., 2011. "Energy and exergy analyses of GAX and GAX hybrid absorption refrigeration cycles," Renewable Energy, Elsevier, vol. 36(7), pages 2011-2020.
    3. Han, Wei & Sun, Liuli & Zheng, Danxing & Jin, Hongguang & Ma, Sijun & Jing, Xuye, 2013. "New hybrid absorption–compression refrigeration system based on cascade use of mid-temperature waste heat," Applied Energy, Elsevier, vol. 106(C), pages 383-390.
    4. Wu, Wei & Shi, Wenxing & Wang, Jian & Wang, Baolong & Li, Xianting, 2016. "Experimental investigation on NH3–H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources," Applied Energy, Elsevier, vol. 176(C), pages 258-271.
    5. Jawahar, C.P. & Saravanan, R., 2010. "Generator absorber heat exchange based absorption cycle--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2372-2382, October.
    6. Dong, Li & Zheng, Danxing & Nie, Nan & Li, Yun, 2012. "Performance prediction of absorption refrigeration cycle based on the measurements of vapor pressure and heat capacity of H2O+[DMIM]DMP system," Applied Energy, Elsevier, vol. 98(C), pages 326-332.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Wei & Shi, Wenxing & Wang, Jian & Wang, Baolong & Li, Xianting, 2016. "Experimental investigation on NH3–H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources," Applied Energy, Elsevier, vol. 176(C), pages 258-271.
    2. Le Lostec, Brice & Galanis, Nicolas & Baribeault, Jean & Millette, Jocelyn, 2008. "Wood chip drying with an absorption heat pump," Energy, Elsevier, vol. 33(3), pages 500-512.
    3. Wu, Wei & You, Tian & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Simulation of a combined heating, cooling and domestic hot water system based on ground source absorption heat pump," Applied Energy, Elsevier, vol. 126(C), pages 113-122.
    4. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
    5. Sun, Jian & Fu, Lin & Zhang, Shigang, 2012. "A review of working fluids of absorption cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1899-1906.
    6. Comakli, K. & Simsek, F. & Comakli, O. & Sahin, B., 2009. "Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method," Applied Energy, Elsevier, vol. 86(11), pages 2451-2458, November.
    7. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "An overview of ammonia-based absorption chillers and heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 681-707.
    8. Ventas, R. & Vereda, C. & Lecuona, A. & Venegas, M., 2012. "Experimental study of a thermochemical compressor for an absorption/compression hybrid cycle," Applied Energy, Elsevier, vol. 97(C), pages 297-304.
    9. Abed, Azher M. & Alghoul, M.A. & Sopian, K. & Majdi, Hasan Sh. & Al-Shamani, Ali Najah & Muftah, A.F., 2017. "Enhancement aspects of single stage absorption cooling cycle: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1010-1045.
    10. Vereda, C. & Ventas, R. & Lecuona, A. & Venegas, M., 2012. "Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions," Applied Energy, Elsevier, vol. 97(C), pages 305-312.
    11. Marias, Foivos & Neveu, Pierre & Tanguy, Gwennyn & Papillon, Philippe, 2014. "Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode," Energy, Elsevier, vol. 66(C), pages 757-765.
    12. Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & Ramos, Alberto, 2011. "Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal," Applied Energy, Elsevier, vol. 88(7), pages 2382-2390, July.
    13. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
    14. Fritz, M. & Plötz, P. & Schebek, L., 2022. "A technical and economical comparison of excess heat transport technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Dou, Pengbo & Jia, Teng & Chu, Peng & Dai, Yanjun & Shou, Chunhui, 2022. "Performance analysis of no-insulation long distance thermal transportation system based on single-stage absorption-resorption cycle," Energy, Elsevier, vol. 243(C).
    16. Meng Yu & Suke Jin & Wenyun Zhang & Guangyue Xia & Baoqin Liu & Long Jiang, 2023. "Feasibility Analysis on Compression-Assisted Adsorption Chiller Using Chlorides for Underground Cold Transportation," Energies, MDPI, vol. 16(24), pages 1-13, December.
    17. Ayou, Dereje S. & Bruno, Joan Carles & Coronas, Alberto, 2017. "Integration of a mechanical and thermal compressor booster in combined absorption power and refrigeration cycles," Energy, Elsevier, vol. 135(C), pages 327-341.
    18. Arshi Banu, P.S. & Sudharsan, N.M., 2018. "Review of water based vapour absorption cooling systems using thermodynamic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3750-3761.
    19. Hong, D.L. & Chen, G.M. & Tang, L.M. & He, Y.J., 2011. "Simulation research on an EAX (Evaporator-Absorber-Exchange) absorption refrigeration cycle," Energy, Elsevier, vol. 36(1), pages 94-98.
    20. Privat, Romain & Qian, Jun-Wei & Alonso, Dominique & Jaubert, Jean-Noël, 2013. "Quest for an efficient binary working mixture for an absorption-demixing heat transformer," Energy, Elsevier, vol. 55(C), pages 594-609.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:10:p:2056-2064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.