IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i1p94-98.html
   My bibliography  Save this article

Simulation research on an EAX (Evaporator-Absorber-Exchange) absorption refrigeration cycle

Author

Listed:
  • Hong, D.L.
  • Chen, G.M.
  • Tang, L.M.
  • He, Y.J.

Abstract

There are some heat sources whose temperature is much higher than the limited generation temperature of conventional single effect absorption refrigeration cycle but lower than that of conventional double effect absorption refrigeration cycle. These heat sources can not be utilized efficiently by prior cycles. To make efficient use of these heat sources, this paper proposed an EAX (Evaporator-Absorber-Exchange) absorption refrigeration cycle. The proposed cycle can make use of the condensing heat of the vapor separated from high temperature generator to make additional refrigeration. Therefore, the COP (Coefficient of Performance) of the proposed cycle is much higher than that of the conventional single effect cycle. Simulation results show that the COP of the EAX cycle can be 40% higher than that of the conventional single effect cycle at some simulated conditions.

Suggested Citation

  • Hong, D.L. & Chen, G.M. & Tang, L.M. & He, Y.J., 2011. "Simulation research on an EAX (Evaporator-Absorber-Exchange) absorption refrigeration cycle," Energy, Elsevier, vol. 36(1), pages 94-98.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:1:p:94-98
    DOI: 10.1016/j.energy.2010.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210006286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Meng & Zhang, Na, 2007. "Proposal and analysis of a novel ammonia–water cycle for power and refrigeration cogeneration," Energy, Elsevier, vol. 32(6), pages 961-970.
    2. Srikhirin, Pongsid & Aphornratana, Satha & Chungpaibulpatana, Supachart, 2001. "A review of absorption refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 343-372, December.
    3. Ben Ezzine, N. & Garma, R. & Bellagi, A., 2010. "A numerical investigation of a diffusion-absorption refrigeration cycle based on R124-DMAC mixture for solar cooling," Energy, Elsevier, vol. 35(5), pages 1874-1883.
    4. Onan, C. & Ozkan, D.B. & Erdem, S., 2010. "Exergy analysis of a solar assisted absorption cooling system on an hourly basis in villa applications," Energy, Elsevier, vol. 35(12), pages 5277-5285.
    5. Wang, Jiangfeng & Dai, Yiping & Zhang, Taiyong & Ma, Shaolin, 2009. "Parametric analysis for a new combined power and ejector–absorption refrigeration cycle," Energy, Elsevier, vol. 34(10), pages 1587-1593.
    6. Medrano, M. & Bourouis, M. & Coronas, A., 2001. "Double-lift absorption refrigeration cycles driven by low-temperature heat sources using organic fluid mixtures as working pairs," Applied Energy, Elsevier, vol. 68(2), pages 173-185, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Teng & Dai, Yanjun, 2018. "Development of a novel unbalanced ammonia-water absorption-resorption heat pump cycle for space heating," Energy, Elsevier, vol. 161(C), pages 251-265.
    2. Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Xia, Z.Z., 2016. "Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures," Applied Energy, Elsevier, vol. 169(C), pages 846-856.
    3. Jia, Teng & Dou, Pengbo & Chu, Peng & Dai, Yanjun, 2020. "Proposal and performance analysis of a novel solar-assisted resorption-subcooled compression hybrid heat pump system for space heating in cold climate condition," Renewable Energy, Elsevier, vol. 150(C), pages 1136-1150.
    4. Wonchala, Jason & Hazledine, Maxwell & Goni Boulama, Kiari, 2014. "Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine," Energy, Elsevier, vol. 65(C), pages 272-284.
    5. Chen, X. & Wang, R.Z. & Du, S., 2017. "An improved cycle for large temperature lifts application in water-ammonia absorption system," Energy, Elsevier, vol. 118(C), pages 1361-1369.
    6. Xu, Z.Y. & Wang, R.Z. & Xia, Z.Z., 2013. "A novel variable effect LiBr-water absorption refrigeration cycle," Energy, Elsevier, vol. 60(C), pages 457-463.
    7. Jia, Teng & Dai, Enqian & Dai, Yanjun, 2019. "Thermodynamic analysis and optimization of a balanced-type single-stage NH3-H2O absorption-resorption heat pump cycle for residential heating application," Energy, Elsevier, vol. 171(C), pages 120-134.
    8. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    9. Xu, Z.Y. & Wang, R.Z., 2014. "Experimental verification of the variable effect absorption refrigeration cycle," Energy, Elsevier, vol. 77(C), pages 703-709.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    2. Han, Wei & Chen, Qiang & Sun, Liuli & Ma, Sijun & Zhao, Ting & Zheng, Danxing & Jin, Hongguang, 2014. "Experimental studies on a combined refrigeration/power generation system activated by low-grade heat," Energy, Elsevier, vol. 74(C), pages 59-66.
    3. Du, S. & Wang, R.Z. & Xia, Z.Z., 2015. "Graphical analysis on internal heat recovery of a single stage ammonia–water absorption refrigeration system," Energy, Elsevier, vol. 80(C), pages 687-694.
    4. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    5. Le Lostec, Brice & Galanis, Nicolas & Baribeault, Jean & Millette, Jocelyn, 2008. "Wood chip drying with an absorption heat pump," Energy, Elsevier, vol. 33(3), pages 500-512.
    6. Usón, Sergio & Kostowski, Wojciech J. & Stanek, Wojciech & Gazda, Wiesław, 2015. "Thermoecological cost of electricity, heat and cold generated in a trigeneration module fuelled with selected fossil and renewable fuels," Energy, Elsevier, vol. 92(P3), pages 308-319.
    7. Sun, Liuli & Han, Wei & Jing, Xuye & Zheng, Danxing & Jin, Hongguang, 2013. "A power and cooling cogeneration system using mid/low-temperature heat source," Applied Energy, Elsevier, vol. 112(C), pages 886-897.
    8. Yang, Mina & Lee, Seung Yeob & Chung, Jin Taek & Kang, Yong Tae, 2017. "High efficiency H2O/LiBr double effect absorption cycles with multi-heat sources for tri-generation application," Applied Energy, Elsevier, vol. 187(C), pages 243-254.
    9. Li, You-Rong & Wang, Xiao-Qiong & Li, Xiao-Ping & Wang, Jian-Ning, 2014. "Performance analysis of a novel power/refrigerating combined-system driven by the low-grade waste heat using different refrigerants," Energy, Elsevier, vol. 73(C), pages 543-553.
    10. Gong, Sunyoung & Goni Boulama, Kiari, 2014. "Parametric study of an absorption refrigeration machine using advanced exergy analysis," Energy, Elsevier, vol. 76(C), pages 453-467.
    11. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    12. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    13. Padilla, Ricardo Vasquez & Demirkaya, Gökmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2010. "Analysis of power and cooling cogeneration using ammonia-water mixture," Energy, Elsevier, vol. 35(12), pages 4649-4657.
    14. Barkhordarian, Orbel & Behbahaninia, Ali & Bahrampoury, Rasool, 2017. "A novel ammonia-water combined power and refrigeration cycle with two different cooling temperature levels," Energy, Elsevier, vol. 120(C), pages 816-826.
    15. Wu, Wei & Shi, Wenxing & Wang, Jian & Wang, Baolong & Li, Xianting, 2016. "Experimental investigation on NH3–H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources," Applied Energy, Elsevier, vol. 176(C), pages 258-271.
    16. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    17. Chen, Yi & Han, Wei & Jin, Hongguang, 2017. "Proposal and analysis of a novel heat-driven absorption–compression refrigeration system at low temperatures," Applied Energy, Elsevier, vol. 185(P2), pages 2106-2116.
    18. Wonchala, Jason & Hazledine, Maxwell & Goni Boulama, Kiari, 2014. "Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine," Energy, Elsevier, vol. 65(C), pages 272-284.
    19. Li, Xinguo & Zhang, Qilin & Li, Xiajie, 2013. "A Kalina cycle with ejector," Energy, Elsevier, vol. 54(C), pages 212-219.
    20. Said, S.A.M. & El-Shaarawi, M.A.I. & Siddiqui, M.U., 2013. "Intermittent absorption refrigeration system equipped with an economizer," Energy, Elsevier, vol. 61(C), pages 332-344.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:1:p:94-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.