IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v77y2014icp703-709.html
   My bibliography  Save this article

Experimental verification of the variable effect absorption refrigeration cycle

Author

Listed:
  • Xu, Z.Y.
  • Wang, R.Z.

Abstract

A variable effect absorption refrigeration cycle is proposed which can obtain a rising COP (Coefficient of Performance) versus the rising generation temperature. This novel cycle could be applied for solar absorption cooling efficiently. In this paper, a 50 kw variable effect (also named as 1.n effect) absorption chiller using LiBr-water as working fluid was designed. Its rated condition is generation temperature of 125 °C, condensation temperature of 40 °C, absorption temperature of 35 °C and evaporation temperature of 5 °C. The variable effect absorption chiller was then manufactured and tested. Data from the experiment showed that the chiller can get a rising COP from 0.69 to 1.08 under generation temperature from 95 °C to 120 °C as it was expected. The average error between theoretical COP and experimental COP was 7.3%. Feasibility of the variable effect absorption chiller and the effectiveness of the design have been verified.

Suggested Citation

  • Xu, Z.Y. & Wang, R.Z., 2014. "Experimental verification of the variable effect absorption refrigeration cycle," Energy, Elsevier, vol. 77(C), pages 703-709.
  • Handle: RePEc:eee:energy:v:77:y:2014:i:c:p:703-709
    DOI: 10.1016/j.energy.2014.09.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214011001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.09.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhai, X.Q. & Wang, R.Z., 2009. "A review for absorbtion and adsorbtion solar cooling systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1523-1531, August.
    2. Jawahar, C.P. & Saravanan, R., 2010. "Generator absorber heat exchange based absorption cycle--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2372-2382, October.
    3. Izquierdo, M. & Marcos, J.D. & Palacios, M.E. & González-Gil, A., 2012. "Experimental evaluation of a low-power direct air-cooled double-effect LiBr–H2O absorption prototype," Energy, Elsevier, vol. 37(1), pages 737-748.
    4. Hong, D.L. & Chen, G.M. & Tang, L.M. & He, Y.J., 2011. "Simulation research on an EAX (Evaporator-Absorber-Exchange) absorption refrigeration cycle," Energy, Elsevier, vol. 36(1), pages 94-98.
    5. Liu, Y.L. & Wang, R.Z., 2004. "Performance prediction of a solar/gas driving double effect LiBr–H2O absorption system," Renewable Energy, Elsevier, vol. 29(10), pages 1677-1695.
    6. Xu, Z.Y. & Wang, R.Z. & Xia, Z.Z., 2013. "A novel variable effect LiBr-water absorption refrigeration cycle," Energy, Elsevier, vol. 60(C), pages 457-463.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    2. Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Xia, Z.Z., 2016. "Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures," Applied Energy, Elsevier, vol. 169(C), pages 846-856.
    3. Hai, Tao & Ashraf Ali, Masood & Alizadeh, As'ad & Sharma, Aman & Sayed Mohammed Metwally, Ahmed & Ullah, Mirzat & Tavasoli, Masoumeh, 2023. "Enhancing the performance of a Novel multigeneration system with electricity, heating, cooling, and freshwater products using genetic algorithm optimization and analysis of energy, exergy, and entrans," Renewable Energy, Elsevier, vol. 209(C), pages 184-205.
    4. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    5. Li, Xian & Lin, Alexander & Young, Chin-Huai & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building," Applied Energy, Elsevier, vol. 254(C).
    6. Zhang, Zhaoli & Alelyani, Sami M. & Zhang, Nan & Zeng, Chao & Yuan, Yanping & Phelan, Patrick E., 2018. "Thermodynamic analysis of a novel sodium hydroxide-water solution absorption refrigeration, heating and power system for low-temperature heat sources," Applied Energy, Elsevier, vol. 222(C), pages 1-12.
    7. Geonhui Gwak & Minwoo Kim & Dohwan Kim & Muhammad Faizan & Kyeongmin Oh & Jaeseung Lee & Jaeyoo Choi & Nammin Lee & Kisung Lim & Hyunchul Ju, 2019. "Performance and Efficiency Analysis of an HT-PEMFC System with an Absorption Chiller for Tri-Generation Applications," Energies, MDPI, vol. 12(5), pages 1-21, March.
    8. Ge, T.S. & Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Chen, X.M. & Ma, T. & Wu, X.N. & Sun, X.L. & Chen, J.F., 2018. "Solar heating and cooling: Present and future development," Renewable Energy, Elsevier, vol. 126(C), pages 1126-1140.
    9. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Z.Y. & Wang, R.Z. & Xia, Z.Z., 2013. "A novel variable effect LiBr-water absorption refrigeration cycle," Energy, Elsevier, vol. 60(C), pages 457-463.
    2. Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Xia, Z.Z., 2016. "Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures," Applied Energy, Elsevier, vol. 169(C), pages 846-856.
    3. Chen, X. & Wang, R.Z. & Du, S., 2017. "An improved cycle for large temperature lifts application in water-ammonia absorption system," Energy, Elsevier, vol. 118(C), pages 1361-1369.
    4. Wonchala, Jason & Hazledine, Maxwell & Goni Boulama, Kiari, 2014. "Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine," Energy, Elsevier, vol. 65(C), pages 272-284.
    5. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    6. Du, S. & Wang, R.Z. & Lin, P. & Xu, Z.Z. & Pan, Q.W. & Xu, S.C., 2012. "Experimental studies on an air-cooled two-stage NH3-H2O solar absorption air-conditioning prototype," Energy, Elsevier, vol. 45(1), pages 581-587.
    7. Hossain, A.K. & Thorpe, R. & Vasudevan, P. & Sen, P.K. & Critoph, R.E. & Davies, P.A., 2013. "Omnigen: Providing electricity, food preparation, cold storage and pure water using a variety of local fuels," Renewable Energy, Elsevier, vol. 49(C), pages 197-202.
    8. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    9. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    10. Du, S. & Wang, R.Z. & Xia, Z.Z., 2015. "Graphical analysis on internal heat recovery of a single stage ammonia–water absorption refrigeration system," Energy, Elsevier, vol. 80(C), pages 687-694.
    11. Yılmaz, İbrahim Halil & Saka, Kenan & Kaynakli, Omer, 2016. "A thermodynamic evaluation on high pressure condenser of double effect absorption refrigeration system," Energy, Elsevier, vol. 113(C), pages 1031-1041.
    12. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    13. N’Tsoukpoe, Kokouvi Edem & Yamegueu, Daniel & Bassole, Justin, 2014. "Solar sorption refrigeration in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 318-335.
    14. Noro, M. & Lazzarin, R.M., 2014. "Solar cooling between thermal and photovoltaic: An energy and economic comparative study in the Mediterranean conditions," Energy, Elsevier, vol. 73(C), pages 453-464.
    15. Hu, Tianle & Xie, Xiaoyun & Jiang, Yi, 2017. "Simulation research on a variable-lift absorption cycle and its application in waste heat recovery of combined heat and power system," Energy, Elsevier, vol. 140(P1), pages 912-921.
    16. Sochard, Sabine & Castillo Garcia, Lorenzo & Serra, Sylvain & Vitupier, Yann & Reneaume, Jean-Michel, 2017. "Modelling a solar absorption chiller using positive flash to estimate the physical state of streams and theoretical plate concept for the generator," Renewable Energy, Elsevier, vol. 109(C), pages 121-134.
    17. Leonzio, Grazia, 2017. "Solar systems integrated with absorption heat pumps and thermal energy storages: state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 492-505.
    18. Izquierdo, M. & González-Gil, A. & Palacios, E., 2014. "Solar-powered single-and double-effect directly air-cooled LiBr–H2O absorption prototype built as a single unit," Applied Energy, Elsevier, vol. 130(C), pages 7-19.
    19. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    20. Jia, Teng & Dou, Pengbo & Chu, Peng & Dai, Yanjun, 2020. "Proposal and performance analysis of a novel solar-assisted resorption-subcooled compression hybrid heat pump system for space heating in cold climate condition," Renewable Energy, Elsevier, vol. 150(C), pages 1136-1150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:77:y:2014:i:c:p:703-709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.