IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v60y2013icp457-463.html
   My bibliography  Save this article

A novel variable effect LiBr-water absorption refrigeration cycle

Author

Listed:
  • Xu, Z.Y.
  • Wang, R.Z.
  • Xia, Z.Z.

Abstract

Generation temperatures from 110 °C to 140 °C are not enough to drive a double effect LiBr-water absorption cycle but too high for a single effect cycle under typical operating conditions. A novel LiBr-water absorption cycle which contains an AGX (absorber generator heat exchanger) is introduced for this. The AGX absorption cycle is able to make use of the high pressure condensation heats of different temperature, and get different amounts of extra refrigeration thus obtains 1.n effect refrigeration. The novel cycle can work under generation temperatures from 85 °C to 150 °C with evaporation temperature of 5 °C, absorption temperature of 35 °C and condensation temperature of 40 °C. The results of simulation show that the novel cycle can work in single effect mode, 1.n effect mode and double effect mode when the generation temperatures are in the ranges of 85 °C–93 °C, 93oC–140 °C and 140 °C–150 °C, and reach a COP (coefficient of performance) of 0.75, 0.75–1.08 and 1.08–1.25 respectively. Comparison between this novel cycle and existing cycle working under similar generation temperature range shows that the novel cycle has a better performance. The large working range also makes the cycle suitable for solar cooling utilizing medium temperature solar collector.

Suggested Citation

  • Xu, Z.Y. & Wang, R.Z. & Xia, Z.Z., 2013. "A novel variable effect LiBr-water absorption refrigeration cycle," Energy, Elsevier, vol. 60(C), pages 457-463.
  • Handle: RePEc:eee:energy:v:60:y:2013:i:c:p:457-463
    DOI: 10.1016/j.energy.2013.08.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213007093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.08.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhai, X.Q. & Wang, R.Z., 2009. "A review for absorbtion and adsorbtion solar cooling systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1523-1531, August.
    2. N’Tsoukpoe, K. Edem & Le Pierrès, Nolwenn & Luo, Lingai, 2012. "Numerical dynamic simulation and analysis of a lithium bromide/water long-term solar heat storage system," Energy, Elsevier, vol. 37(1), pages 346-358.
    3. Jawahar, C.P. & Saravanan, R., 2010. "Generator absorber heat exchange based absorption cycle--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2372-2382, October.
    4. Wang, Yongqing & Lior, Noam, 2011. "Thermoeconomic analysis of a low-temperature multi-effect thermal desalination system coupled with an absorption heat pump," Energy, Elsevier, vol. 36(6), pages 3878-3887.
    5. Hong, D.L. & Chen, G.M. & Tang, L.M. & He, Y.J., 2011. "Simulation research on an EAX (Evaporator-Absorber-Exchange) absorption refrigeration cycle," Energy, Elsevier, vol. 36(1), pages 94-98.
    6. Srikhirin, Pongsid & Aphornratana, Satha & Chungpaibulpatana, Supachart, 2001. "A review of absorption refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 343-372, December.
    7. Gebreslassie, Berhane H. & Medrano, Marc & Boer, Dieter, 2010. "Exergy analysis of multi-effect water–LiBr absorption systems: From half to triple effect," Renewable Energy, Elsevier, vol. 35(8), pages 1773-1782.
    8. Izquierdo, M. & Marcos, J.D. & Palacios, M.E. & González-Gil, A., 2012. "Experimental evaluation of a low-power direct air-cooled double-effect LiBr–H2O absorption prototype," Energy, Elsevier, vol. 37(1), pages 737-748.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    2. Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Xia, Z.Z., 2016. "Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures," Applied Energy, Elsevier, vol. 169(C), pages 846-856.
    3. Yılmaz, İbrahim Halil & Saka, Kenan & Kaynakli, Omer, 2016. "A thermodynamic evaluation on high pressure condenser of double effect absorption refrigeration system," Energy, Elsevier, vol. 113(C), pages 1031-1041.
    4. Chen, X. & Wang, R.Z. & Du, S., 2017. "An improved cycle for large temperature lifts application in water-ammonia absorption system," Energy, Elsevier, vol. 118(C), pages 1361-1369.
    5. Gong, Sunyoung & Goni Boulama, Kiari, 2014. "Parametric study of an absorption refrigeration machine using advanced exergy analysis," Energy, Elsevier, vol. 76(C), pages 453-467.
    6. Min, Haye & Choi, Hyung Won & Jeong, Jaehui & Jeong, Jinhee & Kim, Young & Kang, Yong Tae, 2023. "Daily sorption thermal battery cycle for building applications," Energy, Elsevier, vol. 282(C).
    7. Xu, Z.Y. & Mao, H.C. & Liu, D.S. & Wang, R.Z., 2018. "Waste heat recovery of power plant with large scale serial absorption heat pumps," Energy, Elsevier, vol. 165(PB), pages 1097-1105.
    8. Xu, Z.Y. & Gao, J.T. & Hu, Bin & Wang, R.Z., 2022. "Multi-criterion comparison of compression and absorption heat pumps for ultra-low grade waste heat recovery," Energy, Elsevier, vol. 238(PB).
    9. Yuan, Xiaolei & Liang, Yumin & Hu, Xinyi & Xu, Yizhe & Chen, Yongbao & Kosonen, Risto, 2023. "Waste heat recoveries in data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Xu, Z.Y. & Wang, R.Z., 2019. "Absorption seasonal thermal storage cycle with high energy storage density through multi-stage output," Energy, Elsevier, vol. 167(C), pages 1086-1096.
    11. Hu, Tianle & Xie, Xiaoyun & Jiang, Yi, 2017. "Simulation research on a variable-lift absorption cycle and its application in waste heat recovery of combined heat and power system," Energy, Elsevier, vol. 140(P1), pages 912-921.
    12. He, Yijian & Gao, Xu & Chen, Qifei & Chen, Guangming, 2020. "Study on the performance of a novel waste heat recovery system at low temperatures," Energy, Elsevier, vol. 202(C).
    13. Xu, Z.Y. & Wang, R.Z., 2017. "Simulation of solar cooling system based on variable effect LiBr-water absorption chiller," Renewable Energy, Elsevier, vol. 113(C), pages 907-914.
    14. Ge, T.S. & Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Chen, X.M. & Ma, T. & Wu, X.N. & Sun, X.L. & Chen, J.F., 2018. "Solar heating and cooling: Present and future development," Renewable Energy, Elsevier, vol. 126(C), pages 1126-1140.
    15. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Xu, Z.Y. & Wang, R.Z., 2014. "Experimental verification of the variable effect absorption refrigeration cycle," Energy, Elsevier, vol. 77(C), pages 703-709.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
    2. Xu, Z.Y. & Wang, R.Z., 2014. "Experimental verification of the variable effect absorption refrigeration cycle," Energy, Elsevier, vol. 77(C), pages 703-709.
    3. Chidambaram, L.A. & Ramana, A.S. & Kamaraj, G. & Velraj, R., 2011. "Review of solar cooling methods and thermal storage options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3220-3228, August.
    4. Chen, X. & Wang, R.Z. & Du, S., 2017. "An improved cycle for large temperature lifts application in water-ammonia absorption system," Energy, Elsevier, vol. 118(C), pages 1361-1369.
    5. Wonchala, Jason & Hazledine, Maxwell & Goni Boulama, Kiari, 2014. "Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine," Energy, Elsevier, vol. 65(C), pages 272-284.
    6. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    7. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    8. Du, S. & Wang, R.Z. & Xia, Z.Z., 2015. "Graphical analysis on internal heat recovery of a single stage ammonia–water absorption refrigeration system," Energy, Elsevier, vol. 80(C), pages 687-694.
    9. Yılmaz, İbrahim Halil & Saka, Kenan & Kaynakli, Omer, 2016. "A thermodynamic evaluation on high pressure condenser of double effect absorption refrigeration system," Energy, Elsevier, vol. 113(C), pages 1031-1041.
    10. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    11. Leonzio, Grazia, 2017. "Solar systems integrated with absorption heat pumps and thermal energy storages: state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 492-505.
    12. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    13. Arshi Banu, P.S. & Sudharsan, N.M., 2018. "Review of water based vapour absorption cooling systems using thermodynamic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3750-3761.
    14. Privat, Romain & Qian, Jun-Wei & Alonso, Dominique & Jaubert, Jean-Noël, 2013. "Quest for an efficient binary working mixture for an absorption-demixing heat transformer," Energy, Elsevier, vol. 55(C), pages 594-609.
    15. Yang, Mina & Lee, Seung Yeob & Chung, Jin Taek & Kang, Yong Tae, 2017. "High efficiency H2O/LiBr double effect absorption cycles with multi-heat sources for tri-generation application," Applied Energy, Elsevier, vol. 187(C), pages 243-254.
    16. Gong, Sunyoung & Goni Boulama, Kiari, 2014. "Parametric study of an absorption refrigeration machine using advanced exergy analysis," Energy, Elsevier, vol. 76(C), pages 453-467.
    17. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    18. Bigham, Sajjad & Yu, Dazhi & Chugh, Devesh & Moghaddam, Saeed, 2014. "Moving beyond the limits of mass transport in liquid absorbent microfilms through the implementation of surface-induced vortices," Energy, Elsevier, vol. 65(C), pages 621-630.
    19. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    20. Karamangil, M.I. & Coskun, S. & Kaynakli, O. & Yamankaradeniz, N., 2010. "A simulation study of performance evaluation of single-stage absorption refrigeration system using conventional working fluids and alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1969-1978, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:60:y:2013:i:c:p:457-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.