IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225010710.html
   My bibliography  Save this article

Research on the optimal absorption refrigeration configurations of screened low-GWP organic working fluids via pinch technology

Author

Listed:
  • Zhang, Xiao
  • Xue, Rui
  • Zhou, Runfa
  • Xia, Fan
  • Yu, Yadong
  • Zhang, Xiaosong

Abstract

Organic absorption cooling, as an environmentally friendly technology, has significant potential for building energy conservation and emission reduction. To systematically screen efficient working fluids and optimize heat recovery configurations, this study proposes a novel methodology integrating pinch technology as a comprehensive framework for heat integration analysis in both single-stage absorption refrigeration systems (SSARS) and compression-assisted absorption refrigeration systems (LCARS). Through application of problem table and grid methods, ideal optimal heat integrations for maximum heat recovery under various operating conditions were initially established. The ideal optimal coefficient of performance (COP) served as the performance potential for working pair screening. Among 28 candidate mixtures, R152a + NMP emerged as the optimal candidate, demonstrating the highest average performance potential (0.538) in SSARS and the third-highest average potential (1.139) in LCARS. Detailed thermodynamic analyses elucidated the heat integration mechanisms of R152a + NMP across different conditions. Additionally, a novel configuration termed MHR-LCARS was developed, featuring flexible internal heat recovery through parameter-controlled adjustments to accommodate varying conditions. The MHR-LCARS demonstrated significant COP enhancements over original systems, achieving maximum values of about 0.876 (compression ratio = 1) and 0.989 (compression ratio = 1.5), effectively realizing 79.133 % and 99.198 % of the performance potential respectively.

Suggested Citation

  • Zhang, Xiao & Xue, Rui & Zhou, Runfa & Xia, Fan & Yu, Yadong & Zhang, Xiaosong, 2025. "Research on the optimal absorption refrigeration configurations of screened low-GWP organic working fluids via pinch technology," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010710
    DOI: 10.1016/j.energy.2025.135429
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225010710
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jawahar, C.P. & Saravanan, R., 2010. "Generator absorber heat exchange based absorption cycle--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2372-2382, October.
    2. Sui, Zengguang & Sui, Yunren & Wu, Wei, 2022. "Multi-objective optimization of a microchannel membrane-based absorber with inclined grooves based on CFD and machine learning," Energy, Elsevier, vol. 240(C).
    3. Barone, G. & Buonomano, A. & Calise, F. & Forzano, C. & Palombo, A., 2019. "Building to vehicle to building concept toward a novel zero energy paradigm: Modelling and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 625-648.
    4. Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari & Mousavi, Seyed Ali, 2019. "Evaluation of an optimal integrated design multi-fuel multi-product electrical power plant by energy and exergy analyses," Energy, Elsevier, vol. 169(C), pages 61-78.
    5. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    6. Mansouri, Rami & Boukholda, Ismail & Bourouis, Mahmoud & Bellagi, Ahmed, 2015. "Modelling and testing the performance of a commercial ammonia/water absorption chiller using Aspen-Plus platform," Energy, Elsevier, vol. 93(P2), pages 2374-2383.
    7. Chen, Yi & Han, Wei & Jin, Hongguang, 2015. "An absorption–compression refrigeration system driven by a mid-temperature heat source for low-temperature applications," Energy, Elsevier, vol. 91(C), pages 215-225.
    8. Gao, Yu & He, Guogeng & Chen, Peidong & Zhao, Xin & Cai, Dehua, 2019. "Energy and exergy analysis of an air-cooled waste heat-driven absorption refrigeration cycle using R290/oil as working fluid," Energy, Elsevier, vol. 173(C), pages 820-832.
    9. Du, S. & Wang, R.Z. & Chen, X., 2017. "Analysis on maximum internal heat recovery of a mass-coupled two stage ammonia water absorption refrigeration system," Energy, Elsevier, vol. 133(C), pages 822-831.
    10. Papadopoulos, Athanasios I. & Kyriakides, Alexios-Spyridon & Seferlis, Panos & Hassan, Ibrahim, 2019. "Absorption refrigeration processes with organic working fluid mixtures- a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 239-270.
    11. Zhang, Xiao & Cai, Liang & Chen, Tao & Qiao, Jingyi & Zhang, Xiaosong, 2021. "Vapor-liquid equilibrium measurements and assessments of Low-GWP absorption working pairs (R32+DMETEG, R152a+DMETEG, and R161+DMETEG) for absorption refrigeration systems," Energy, Elsevier, vol. 224(C).
    12. Chen, X. & Wang, R.Z. & Du, S., 2017. "Heat integration of ammonia-water absorption refrigeration system through heat-exchanger network analysis," Energy, Elsevier, vol. 141(C), pages 1585-1599.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
    2. Akbari Kordlar, M. & Mahmoudi, S.M.S. & Talati, F. & Yari, M. & Mosaffa, A.H., 2019. "A new flexible geothermal based cogeneration system producing power and refrigeration, part two: The influence of ambient temperature," Renewable Energy, Elsevier, vol. 134(C), pages 875-887.
    3. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    4. Zhang, Xiao & Cai, Liang & Chen, Tao & Qiao, Jingyi & Zhang, Xiaosong, 2021. "Vapor-liquid equilibrium measurements and assessments of Low-GWP absorption working pairs (R32+DMETEG, R152a+DMETEG, and R161+DMETEG) for absorption refrigeration systems," Energy, Elsevier, vol. 224(C).
    5. Wu, Wei & Zhai, Chong & Huang, Si-Min & Sui, Yunren & Sui, Zengguang & Ding, Zhixiong, 2022. "A hybrid H2O/IL absorption and CO2 compression air-source heat pump for ultra-low ambient temperatures," Energy, Elsevier, vol. 239(PB).
    6. Mendiburu, Andrés Z. & Roberts, Justo J. & Rodrigues, Letícia Jenisch & Verma, Sujit Kr, 2023. "Thermodynamic modelling for absorption refrigeration cycles powered by solar energy and a case study for Porto Alegre, Brazil," Energy, Elsevier, vol. 266(C).
    7. Zhang, Xiao & Cai, Liang & Chen, Tao & Liu, Jian & Zhang, Xiaosong, 2023. "Thermodynamic screening and analysis of ionic liquids as absorbents paired with low-GWP refrigerants in absorption refrigeration systems," Energy, Elsevier, vol. 282(C).
    8. Harutyunyan, Artur & Badyda, Krzysztof & Wołowicz, Marcin, 2025. "Analyzing of different repowering methods on the example of 300 MW existing steam cycle power plant using gatecycle™ software," Energy, Elsevier, vol. 314(C).
    9. Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
    10. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    11. Du, S. & Wang, R.Z. & Xia, Z.Z., 2015. "Graphical analysis on internal heat recovery of a single stage ammonia–water absorption refrigeration system," Energy, Elsevier, vol. 80(C), pages 687-694.
    12. Ramesh Chitharaj & Hariprasad Perumal & Mohammed Almeshaal & P. Manoj Kumar, 2025. "Optimizing Performance of a Solar Flat Plate Collector for Sustainable Operation Using Box–Behnken Design (BBD)," Sustainability, MDPI, vol. 17(2), pages 1-23, January.
    13. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
    14. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2024. "Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies," Applied Energy, Elsevier, vol. 365(C).
    15. Chen, Xin & Zhang, Lin & Huang, JiangBo & Jin, Lei & Song, YongShi & Zheng, XianHua & Zou, ZhiXiong, 2025. "A thermodynamics-consistent machine learning approach for ammonia-water thermal cycles," Energy, Elsevier, vol. 315(C).
    16. Jeong, Jaehui & Jung, Han Sol & Lee, Jae Won & Kang, Yong Tae, 2023. "Hybrid cooling and heating absorption heat pump cycle with thermal energy storage," Energy, Elsevier, vol. 283(C).
    17. Alexandre F. M. Correia & Pedro Moura & Aníbal T. de Almeida, 2022. "Technical and Economic Assessment of Battery Storage and Vehicle-to-Grid Systems in Building Microgrids," Energies, MDPI, vol. 15(23), pages 1-23, November.
    18. Simona Domazetovska & Vladimir Strezov & Risto V. Filkoski & Tao Kan, 2023. "Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    19. Xuan Tao & Dhinesh Thanganadar & Kumar Patchigolla, 2022. "Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance," Energies, MDPI, vol. 15(18), pages 1-28, September.
    20. Obu Samson Showers & Sunetra Chowdhury, 2024. "Enhancing Energy Supply Reliability for University Lecture Halls Using Photovoltaic-Battery Microgrids: A South African Case Study," Energies, MDPI, vol. 17(13), pages 1-26, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.