IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2496-d544469.html
   My bibliography  Save this article

Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System

Author

Listed:
  • Li Yang

    (Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
    The College of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Yunfeng Ren

    (Zhejiang Pyneo Technology Limited Company, Hangzhou 311121, China)

  • Zhihua Wang

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310012, China)

  • Zhouming Hang

    (College of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Yunxia Luo

    (Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
    The College of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

Abstract

Industrial circulating cooling water contains a large amount of low-quality energy, which is lost to the environment through cooling towers. It is of great significance and potential to recover the waste heat to improve energy-saving effects and economic efficiency. However, the effect of common water harvesting and energy saving devices is not significant. Heat pumps have been shown to be effective in improving low-quality heat energy in energy conversion systems, although there are not many applications of heat pump scenarios in engineering practice. Based on this, a recovery solution of circulating cooling water waste heat and water resource using lithium bromide absorption heat pump has been put forward. The energy-saving performance of the recovery system was simulated and analyzed using Aspen Plus V10.0 (Bedford, MA, USA) to explore the effects of the parameters of the working medium in evaporators, condensers, absorbers, generators, heat exchangers, etc., and the modelling results indicated that the evaporation pressure and temperature have a great influence on the system COP (coefficient of performance) and can raise the thermal economy of the system. The heat from driving steam and heating capacity both increased with the increase in generating temperature, while the increase in temperature difference between evaporation and condensation inhibits the COP of heat pump systems. Furthermore, economic analyses and comparisons of the recovery solutions were conducted and the recovery solution of circulating cooling water waste heat with heat pump had the best economic performance due to the annual income from the recovery of waste heat and water resource. The static payback period results indicate that the recovery solution from circulating cooling water waste heat with a heat pump has better economic performance than the scenario with a cooling tower. The waste heat recovery solution with a heat pump can improve the thermal economy of the system and has a great guiding significance for engineering practice.

Suggested Citation

  • Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2496-:d:544469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Forman, Clemens & Muritala, Ibrahim Kolawole & Pardemann, Robert & Meyer, Bernd, 2016. "Estimating the global waste heat potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1568-1579.
    2. Xiang Gou & Yang Fu & Imran Ali Shah & Yamei Li & Guoyou Xu & Yue Yang & Enyu Wang & Liansheng Liu & Jinxiang Wu, 2016. "Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS," Energies, MDPI, vol. 9(12), pages 1-16, December.
    3. Wang, Xiang & Zhuo, Jiankun & Liu, Jianmin & Li, Shuiqing, 2020. "Synergetic process of condensing heat exchanger and absorption heat pump for waste heat and water recovery from flue gas," Applied Energy, Elsevier, vol. 261(C).
    4. Sheikholeslami, M. & Farshad, Seyyed Ali, 2021. "Investigation of solar collector system with turbulator considering hybrid nanoparticles," Renewable Energy, Elsevier, vol. 171(C), pages 1128-1158.
    5. Mansouri, Rami & Boukholda, Ismail & Bourouis, Mahmoud & Bellagi, Ahmed, 2015. "Modelling and testing the performance of a commercial ammonia/water absorption chiller using Aspen-Plus platform," Energy, Elsevier, vol. 93(P2), pages 2374-2383.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan Yao & Man Zhang & Boyu Deng & Xinhua Yang & Hairui Yang, 2021. "Primary Research of a New Zero-Liquid-Discharge Technology of Wet Flue Gas Desulfurization Wastewater by Low-Rank Heat from Flue Gas," Energies, MDPI, vol. 14(14), pages 1-9, July.
    2. Stanislav Boldyryev & Mariia Ilchenko & Goran Krajačić, 2024. "Improving the Economic Efficiency of Heat Pump Integration into Distillation Columns of Process Plants Applying Different Pressures of Evaporators and Condensers," Energies, MDPI, vol. 17(4), pages 1-33, February.
    3. Rima Aridi & Jalal Faraj & Samer Ali & Mostafa Gad El-Rab & Thierry Lemenand & Mahmoud Khaled, 2021. "Energy Recovery in Air Conditioning Systems: Comprehensive Review, Classifications, Critical Analysis, and Potential Recommendations," Energies, MDPI, vol. 14(18), pages 1-31, September.
    4. Peng Wang & Xingqi Luo & Jinling Lu & Qiyao Xue & Jiawei Gao & Senlin Chen, 2022. "Energy and Economic Analysis of Power Generation Using Residual Pressure of a Circulating Cooling Water System," Sustainability, MDPI, vol. 14(19), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    2. Markus Fritz & Ali Aydemir & Liselotte Schebek, 2022. "How Much Excess Heat Might Be Used in Buildings? A Spatial Analysis at the Municipal Level in Germany," Energies, MDPI, vol. 15(17), pages 1-17, August.
    3. Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
    4. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    5. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    6. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.
    7. Kisorthman Vimalakanthan & Matthew Read & Ahmed Kovacevic, 2020. "Numerical Modelling and Experimental Validation of Twin-Screw Expanders," Energies, MDPI, vol. 13(18), pages 1-13, September.
    8. Zhao, Y. & You, Y. & Liu, H.B. & Zhao, C.Y. & Xu, Z.G., 2018. "Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process," Energy, Elsevier, vol. 157(C), pages 690-706.
    9. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Luo, Jiaqi & Zhou, Qiang & Jin, Tao, 2023. "Theoretical and experimental investigation of acoustic field adjustment of a gas-liquid standing-wave thermoacoustic engine," Energy, Elsevier, vol. 276(C).
    11. Stylianos Flegkas & Felix Birkelbach & Franz Winter & Hans Groenewold & Andreas Werner, 2019. "Profitability Analysis and Capital Cost Estimation of a Thermochemical Energy Storage System Utilizing Fluidized Bed Reactors and the Reaction System MgO/Mg(OH) 2," Energies, MDPI, vol. 12(24), pages 1-16, December.
    12. Miriam Benedetti & Daniele Dadi & Lorena Giordano & Vito Introna & Pasquale Eduardo Lapenna & Annalisa Santolamazza, 2021. "Design of a Database of Case Studies and Technologies to Increase the Diffusion of Low-Temperature Waste Heat Recovery in the Industrial Sector," Sustainability, MDPI, vol. 13(9), pages 1-19, May.
    13. Li, Nianqi & Chen, Jian & Cheng, Tao & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Wang, Qiuwang & Yang, Weisheng & Liu, Xia & Zeng, Min, 2020. "Analysing thermal-hydraulic performance and energy efficiency of shell-and-tube heat exchangers with longitudinal flow based on experiment and numerical simulation," Energy, Elsevier, vol. 202(C).
    14. Adriana Reyes-Lúa & Julian Straus & Vidar T. Skjervold & Goran Durakovic & Tom Ståle Nordtvedt, 2021. "A Novel Concept for Sustainable Food Production Utilizing Low Temperature Industrial Surplus Heat," Sustainability, MDPI, vol. 13(17), pages 1-23, August.
    15. Zhang, Xiao & Cai, Liang & Chen, Tao & Qiao, Jingyi & Zhang, Xiaosong, 2021. "Vapor-liquid equilibrium measurements and assessments of Low-GWP absorption working pairs (R32+DMETEG, R152a+DMETEG, and R161+DMETEG) for absorption refrigeration systems," Energy, Elsevier, vol. 224(C).
    16. Low, Elaine & Huang, Si-Min & Yang, Minlin & Show, Pau Loke & Law, Chung Lim, 2021. "Design of cascade analysis for renewable and waste heat recovery in a solar thermal regeneration unit of a liquid desiccant dehumidification system," Energy, Elsevier, vol. 235(C).
    17. Zuberi, M. Jibran S. & Bless, Frédéric & Chambers, Jonathan & Arpagaus, Cordin & Bertsch, Stefan S. & Patel, Martin K., 2018. "Excess heat recovery: An invisible energy resource for the Swiss industry sector," Applied Energy, Elsevier, vol. 228(C), pages 390-408.
    18. Wei-Hsin Chen & Yi-Wei Li & Min-Hsing Chang & Chih-Che Chueh & Veeramuthu Ashokkumar & Lip Huat Saw, 2022. "Operation and Multi-Objective Design Optimization of a Plate Heat Exchanger with Zigzag Flow Channel Geometry," Energies, MDPI, vol. 15(21), pages 1-22, November.
    19. Azizi, Saeid & Shakibi, Hamid & Shokri, Afshar & Chitsaz, Ata & Yari, Mortaza, 2023. "Multi-aspect analysis and RSM-based optimization of a novel dual-source electricity and cooling cogeneration system," Applied Energy, Elsevier, vol. 332(C).
    20. Preeti, & Ojjela, Odelu, 2022. "Numerical investigation of heat transport in Alumina–Silica hybrid nanofluid flow with modeling and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 100-122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2496-:d:544469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.