IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224039227.html
   My bibliography  Save this article

Exergy and coupled system analysis of hydrophilic polymeric membrane condenser in coal-fired power plants

Author

Listed:
  • Xiao, Liehui
  • Ning, Zhuo
  • Chen, Bin
  • Chen, Jie-Chao
  • Yuan, Wu-Zhi
  • Huang, Si-Min

Abstract

Hydrophilic polymeric membrane condenser (HPMC) is an efficient equipment for the recovery of heat and humidity from flue gas. The previous studies have primarily focused on the performances of water and heat recovery. However, the research on recovered heat grade and irreversible loss of HPMC remains limited. Moreover, the heat utilization of HPMC's outlet water also deserves considerable attention. Therefore, this study conducts a numerical investigation to explore the exergy performance of HPMC, and a novel system that integrates HPMC with absorption heat pump is proposed. The exergy efficiency increases from 16 % to 48 % in HPMC along the water flow direction, attributed to a decrease in exergy destruction. The elevation of flue gas temperature exhibits a notable enhancement in the recovered exergy flux, while concurrently intensifying the exergy destruction. The optimal cooling water temperature and flow rate are 28 °C and 1.8 t/h, respectively, to attain the maximum recovered exergy flux. The novel system demonstrates exceptional efficiency in heat and humidity recovery, as well as exergy performance. The payback period of the novel system is 1.33 years with operating duration of 5500 h/year. This study offers a new perspective on the exergy performance and heat utilization of HPMC.

Suggested Citation

  • Xiao, Liehui & Ning, Zhuo & Chen, Bin & Chen, Jie-Chao & Yuan, Wu-Zhi & Huang, Si-Min, 2025. "Exergy and coupled system analysis of hydrophilic polymeric membrane condenser in coal-fired power plants," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039227
    DOI: 10.1016/j.energy.2024.134144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224039227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jialei & Li, Zhaohao & Zhang, Heng & Chen, Haiping & Gao, Dan, 2020. "Numerical study on recovering moisture and heat from flue gas by means of a macroporous ceramic membrane module," Energy, Elsevier, vol. 207(C).
    2. Wang, Xiang & Zhuo, Jiankun & Liu, Jianmin & Li, Shuiqing, 2020. "Synergetic process of condensing heat exchanger and absorption heat pump for waste heat and water recovery from flue gas," Applied Energy, Elsevier, vol. 261(C).
    3. Yang, Boran & Sun, Shi & Shang, Fumin & Hu, Nan & Chen, Haiping, 2023. "Effects of condensate film flowing on condensation heat and mass-transfer deterioration on some regions within water-recovery module consisted of micro-porous ceramic membranes," Renewable Energy, Elsevier, vol. 208(C), pages 604-617.
    4. Zhao, Chunhao & Wang, Zhengfeng & Gao, Dan & Chen, Haiping & Zhang, Heng, 2022. "Simulation and techno-economic analysis of moisture and heat recovery from original flue gas in coal-fired power plants by macroporous ceramic membrane," Energy, Elsevier, vol. 259(C).
    5. Anderson, Jeffrey J. & Rode, David & Zhai, Haibo & Fischbeck, Paul, 2021. "Transitioning to a carbon-constrained world: Reductions in coal-fired power plant emissions through unit-specific, least-cost mitigation frontiers," Applied Energy, Elsevier, vol. 288(C).
    6. Wang, Dexin & Bao, Ainan & Kunc, Walter & Liss, William, 2012. "Coal power plant flue gas waste heat and water recovery," Applied Energy, Elsevier, vol. 91(1), pages 341-348.
    7. Li, Zhaohao & Mi, Dabin & Zhang, Heng & Chen, Haiping & Liu, Zhenghao & Gao, Dan, 2021. "Experimental study on synergistic capture of fine particles and waste heat from flue gas using membrane condenser," Energy, Elsevier, vol. 217(C).
    8. Zhang, Haonan & Zhang, Xingping & Yuan, Jiahai, 2020. "Transition of China's power sector consistent with Paris Agreement into 2050: Pathways and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Chunhao & Wang, Zhengfeng & Gao, Dan & Chen, Haiping & Zhang, Heng, 2022. "Simulation and techno-economic analysis of moisture and heat recovery from original flue gas in coal-fired power plants by macroporous ceramic membrane," Energy, Elsevier, vol. 259(C).
    2. Li, Xiangsheng & Xue, Kaili & Yang, Jihao & Cai, Peihao & Zhang, Heng & Chen, Haiping & Cheng, Chao & Li, Zhaohao, 2023. "Experimental study on liquid-gas phase separation driven by pressure gradient in transport membrane condenser," Energy, Elsevier, vol. 282(C).
    3. Li, Zhaohao & Mi, Dabin & Zhang, Heng & Chen, Haiping & Liu, Zhenghao & Gao, Dan, 2021. "Experimental study on synergistic capture of fine particles and waste heat from flue gas using membrane condenser," Energy, Elsevier, vol. 217(C).
    4. Ma, Hongqiang & Liang, Nuo & Liu, Yemin & Luo, Xinmei & Hou, Caiqin & Wang, Gang, 2021. "Experimental study on novel waste heat recovery system for sulfide-containing flue gas," Energy, Elsevier, vol. 227(C).
    5. Ma, Hongqiang & Xie, Yue & Duan, Kerun & Song, Xingpeng & Ding, Ruixiang & Hou, Caiqin, 2022. "Dynamic control method of flue gas heat transfer system in the waste heat recovery process," Energy, Elsevier, vol. 259(C).
    6. Li, Zhaohao & Zhang, Heng & Chen, Haiping & Gao, Dan, 2025. "Theoretical progress in treating the flue gas with ceramic membranes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    7. Jia, Ce & Guo, Xiaodan & Tian, Ziyue & Xiao, Bowen, 2025. "Unintended consequences of SO2 mitigation: Increased PM and infant mortality in China," Energy Economics, Elsevier, vol. 144(C).
    8. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    9. Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
    10. Ma, Youfu & Wang, Zirui & Lu, Junfu & Yang, Lijuan, 2018. "Techno-economic analysis of a novel hot air recirculation process for exhaust heat recovery from a 600 MW brown-coal-fired boiler," Energy, Elsevier, vol. 152(C), pages 348-357.
    11. Gaurav, Gajendra Kumar & Chauhan, Shivendra Singh & Khanam, Shabina & Zhang, Fuchun & Liu, Xinghui, 2025. "Efficient enhancement in thermal power plant using wastewater and flue gas streams," Energy, Elsevier, vol. 319(C).
    12. Yuan Liu & Qinliang Tan & Jian Han & Mingxin Guo, 2021. "Energy-Water-Carbon Nexus Optimization for the Path of Achieving Carbon Emission Peak in China Considering Multiple Uncertainties: A Case Study in Inner Mongolia," Energies, MDPI, vol. 14(4), pages 1-21, February.
    13. Ma, Yuxin & Gao, Enyuan & Zhang, Xiaosong & Huang, Shifang, 2024. "Parametric analysis and design optimization of a fully open absorption heat pump for heat and water recovery of flue gas," Applied Energy, Elsevier, vol. 375(C).
    14. Tu, Te & Yang, Xing & Cui, Qiufang & Shang, Yu & Yan, Shuiping, 2022. "CO2 regeneration energy requirement of carbon capture process with an enhanced waste heat recovery from stripped gas by advanced transport membrane condenser," Applied Energy, Elsevier, vol. 323(C).
    15. Xu Wang & Xiang Su & Ke Bi, 2023. "Achieving Synergies of Carbon Emission Reduction, Cost Savings, and Asset Investments in China’s Industrial Sector: Towards Sustainable Practices," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    16. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    17. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Li, Hailong & Wang, Bin & Yan, Jinying & Salman, Chaudhary Awais & Thorin, Eva & Schwede, Sebastian, 2019. "Performance of flue gas quench and its influence on biomass fueled CHP," Energy, Elsevier, vol. 180(C), pages 934-945.
    19. Cui, Qiufang & Tu, Te & Ji, Long & Yan, Shuiping, 2021. "CO2 capture cost saving through waste heat recovery using transport membrane condenser in different solvent-based carbon capture processes," Energy, Elsevier, vol. 216(C).
    20. Li, Xiang & Yan, Xiaoyu, 2024. "Fast penetration of electric vehicles in China cannot achieve steep cuts in air emissions from road transport without synchronized renewable electricity expansion," Energy, Elsevier, vol. 301(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.