IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v209y2025ics136403212400861x.html
   My bibliography  Save this article

Theoretical progress in treating the flue gas with ceramic membranes

Author

Listed:
  • Li, Zhaohao
  • Zhang, Heng
  • Chen, Haiping
  • Gao, Dan

Abstract

The ceramic membrane separation is the key technology to solving problems caused by the moisture and the waste heat recovery from the wet flue gas. It involves research contents of the condensation, the transmembrane process and the irreversibility. This work summarizes problems in these three aspects, provides corresponding solutions based on the research status, and hopes to solve problems by combining experiments and numerical simulations. Aiming at the condensation characteristics, the critical criterion for the condensation mode conversion of the wet flue gas inside pores will be defined, followed by the characterization of the temporal and the spatial distribution of the condensate so as to shed light on limitations of the theoretical strengthening of the condensation heat transfer. Aiming at the transmembrane process, a theoretical model of the heat and mass coupled transfer will be developed. Constitutive relations between transfer fluxes and driving forces under steady and unsteady conditions will be analyzed to reveal mechanisms of the heat and mass coupled transfer in the physical field. Aiming at the irreversibility, a comprehensive efficiency evaluation model will be generated for the heat and the moisture recovery of multi-stage ceramic membrane modules covering irreversible losses, and to determine the matching relationship between the energy flow and the material flow. The novelty of this work is clarifying the heat and mass transfer problem under the physical scenario of treating the wet flue gas by ceramic membranes, which may provide references for the future research in this field.

Suggested Citation

  • Li, Zhaohao & Zhang, Heng & Chen, Haiping & Gao, Dan, 2025. "Theoretical progress in treating the flue gas with ceramic membranes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:rensus:v:209:y:2025:i:c:s136403212400861x
    DOI: 10.1016/j.rser.2024.115135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212400861X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alex Albaugh & Todd R. Gingrich, 2022. "Simulating a chemically fueled molecular motor with nonequilibrium molecular dynamics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Xiao, Liehui & Yang, Minlin & Zhao, Shuaifei & Yuan, Wu-Zhi & Huang, Si-Min, 2019. "Entropy generation analysis of heat and water recovery from flue gas by transport membrane condenser," Energy, Elsevier, vol. 174(C), pages 835-847.
    3. You, Jinfang & Zhang, Xi & Gao, Jintong & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Entransy based heat exchange irreversibility analysis for a hybrid absorption-compression heat pump cycle," Energy, Elsevier, vol. 289(C).
    4. Zhao, Chunhao & Wang, Zhengfeng & Gao, Dan & Chen, Haiping & Zhang, Heng, 2022. "Simulation and techno-economic analysis of moisture and heat recovery from original flue gas in coal-fired power plants by macroporous ceramic membrane," Energy, Elsevier, vol. 259(C).
    5. Zhang, Hao & Lai, Yanhua & Yang, Xiao & Li, Chang & Dong, Yong, 2022. "Non-evaporative solvent extraction technology applied to water and heat recovery from low-temperature flue gas: Parametric analysis and feasibility evaluation," Energy, Elsevier, vol. 244(PB).
    6. Qian Yang & P. Z. Sun & L. Fumagalli & Y. V. Stebunov & S. J. Haigh & Z. W. Zhou & I. V. Grigorieva & F. C. Wang & A. K. Geim, 2020. "Capillary condensation under atomic-scale confinement," Nature, Nature, vol. 588(7837), pages 250-253, December.
    7. Norihiro Moriyama & Akihiro Takeyama & Taichi Yamatoko & Ken-ichi Sawamura & Koji Gonoi & Hiroki Nagasawa & Masakoto Kanezashi & Toshinori Tsuru, 2023. "Steam recovery from flue gas by organosilica membranes for simultaneous harvesting of water and energy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Wang, Dexin & Bao, Ainan & Kunc, Walter & Liss, William, 2012. "Coal power plant flue gas waste heat and water recovery," Applied Energy, Elsevier, vol. 91(1), pages 341-348.
    9. Shidan Chi & Tao Luan & Yan Liang & Xundong Hu & Yan Gao, 2020. "Analysis and Evaluation of Multi-Energy Cascade Utilization System for Ultra-Supercritical Units," Energies, MDPI, vol. 13(15), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Liehui & Ning, Zhuo & Chen, Bin & Chen, Jie-Chao & Yuan, Wu-Zhi & Huang, Si-Min, 2025. "Exergy and coupled system analysis of hydrophilic polymeric membrane condenser in coal-fired power plants," Energy, Elsevier, vol. 314(C).
    2. Cui, Qiufang & Tu, Te & Ji, Long & Yan, Shuiping, 2021. "CO2 capture cost saving through waste heat recovery using transport membrane condenser in different solvent-based carbon capture processes," Energy, Elsevier, vol. 216(C).
    3. Li, Zhaohao & Mi, Dabin & Zhang, Heng & Chen, Haiping & Liu, Zhenghao & Gao, Dan, 2021. "Experimental study on synergistic capture of fine particles and waste heat from flue gas using membrane condenser," Energy, Elsevier, vol. 217(C).
    4. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    5. Chaofan Zhou & Hongjie Gao & Saiyu Bu & Haotian Wu & Fan Liang & Fangfang Li & Zhaoning Hu & Yixuan Zhao & Bingbing Guo & Zelong Li & Li Yin & Xiaokai Hu & Qin Xie & Yang Su & Zhongfan Liu & Li Lin, 2025. "Principles for fabricating moisture barrier films via stacked Janus graphene layers," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    6. Ma, Youfu & Wang, Zirui & Lu, Junfu & Yang, Lijuan, 2018. "Techno-economic analysis of a novel hot air recirculation process for exhaust heat recovery from a 600 MW brown-coal-fired boiler," Energy, Elsevier, vol. 152(C), pages 348-357.
    7. Ma, Yuxin & Gao, Enyuan & Zhang, Xiaosong & Huang, Shifang, 2024. "Parametric analysis and design optimization of a fully open absorption heat pump for heat and water recovery of flue gas," Applied Energy, Elsevier, vol. 375(C).
    8. Li, Hailong & Wang, Bin & Yan, Jinying & Salman, Chaudhary Awais & Thorin, Eva & Schwede, Sebastian, 2019. "Performance of flue gas quench and its influence on biomass fueled CHP," Energy, Elsevier, vol. 180(C), pages 934-945.
    9. Qiao, Yan & Jiang, Wenquan & Li, Yang & Dong, Xiaoxiao & Yang, Fan, 2024. "Design and analysis of steam methane reforming hydrogen liquefaction and waste heat recovery system based on liquefied natural gas cold energy," Energy, Elsevier, vol. 302(C).
    10. Rongrong Zhai & Hongtao Liu & Hao Wu & Hai Yu & Yongping Yang, 2018. "Analysis of Integration of MEA-Based CO 2 Capture and Solar Energy System for Coal-Based Power Plants Based on Thermo-Economic Structural Theory," Energies, MDPI, vol. 11(5), pages 1-30, May.
    11. Aliabadi, Mohammad Ali Faghih & Lakzian, Esmail & Khazaei, Iman & Jahangiri, Ali, 2020. "A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade," Energy, Elsevier, vol. 190(C).
    12. Zhang, Jialei & Li, Zhaohao & Zhang, Heng & Chen, Haiping & Gao, Dan, 2020. "Numerical study on recovering moisture and heat from flue gas by means of a macroporous ceramic membrane module," Energy, Elsevier, vol. 207(C).
    13. Ji, Qiang & Che, Chunwen & Yin, Yonggao & Huang, Gongsheng & Pan, Tengxiang & Zhao, Donglin & Wang, Yikai, 2024. "Optimizing working fluids for advancing industrial heating performance of compression-absorption cascade heat pump," Applied Energy, Elsevier, vol. 376(PB).
    14. Enze Wang & Zixin Xiong & Zekun Chen & Zeqin Xin & Huachun Ma & Hongtao Ren & Bolun Wang & Jing Guo & Yufei Sun & Xuewen Wang & Chenyu Li & Xiaoyan Li & Kai Liu, 2023. "Water nanolayer facilitated solitary-wave-like blisters in MoS2 thin films," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Nathan Ronceray & Massimo Spina & Vanessa Hui Yin Chou & Chwee Teck Lim & Andre K. Geim & Slaven Garaj, 2024. "Elastocapillarity-driven 2D nano-switches enable zeptoliter-scale liquid encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Yi, Yuhao & Xie, Xiaoyun & Zhang, Hao & Jiang, Yi, 2024. "Theoretical perfection and application of entransy analysis method on absorption systems," Energy, Elsevier, vol. 307(C).
    17. Laigang Hu & Wenhao Wu & Min Hu & Ling Jiang & Daohui Lin & Jian Wu & Kun Yang, 2024. "Double-walled Al-based MOF with large microporous specific surface area for trace benzene adsorption," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Ma, Hongqiang & Liang, Nuo & Liu, Yemin & Luo, Xinmei & Hou, Caiqin & Wang, Gang, 2021. "Experimental study on novel waste heat recovery system for sulfide-containing flue gas," Energy, Elsevier, vol. 227(C).
    19. Zhao, Chunhao & Wang, Zhengfeng & Gao, Dan & Chen, Haiping & Zhang, Heng, 2022. "Simulation and techno-economic analysis of moisture and heat recovery from original flue gas in coal-fired power plants by macroporous ceramic membrane," Energy, Elsevier, vol. 259(C).
    20. Wei, Maolin & Zhao, Xiling & Fu, Lin & Zhang, Shigang, 2017. "Performance study and application of new coal-fired boiler flue gas heat recovery system," Applied Energy, Elsevier, vol. 188(C), pages 121-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:209:y:2025:i:c:s136403212400861x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.