IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v384y2025ics0306261925002326.html
   My bibliography  Save this article

Thermal gradient optimization in independent cascade heat pumps for efficient ultra-high temperature heating

Author

Listed:
  • Ji, Qiang
  • Pan, Tengxiang
  • Li, Yizhen
  • Che, Chunwen
  • Huang, Gongsheng
  • Yin, Yonggao

Abstract

Air source compression-absorption hybrid heat pumps hold promise for industrial decarbonization, but their current temperature lift capacity remains insufficient to meet ultra-high temperature requirements. Moreover, in elementary independent cascade configurations, all compression sub-loops operate at the same evaporation temperature. This lack of targeted optimization results in higher compressor power consumption and reduced efficiency. To overcome these limitations, an advanced independent cascade design and two derivative heat pump configurations are constructed in this paper. These innovations aim to broaden the suitability of air source heat pumps for ultra-high temperature applications and push the boundaries of efficiency. Based on validated models, the results indicate that the proposed independent cascade evaporative thermal coupling heat pump can achieve a heated temperature of 204 °C from an input source of 10 °C, extending the temperature lift capacity by around 18 °C compared to the elementary independent cascade baseline. This advanced configuration, featuring optimized thermal gradient coupling between sub-loops, significantly reduces irreversible losses by 70.7 % relative to the baseline system. Moreover, it demonstrates marked improvements in performance, with COP and ECOP increasing by 57.9 % and 60.3 %, respectively, while reducing initial investment costs by 6.6 % to 8.3 %. These findings enhance the feasibility of sustainable industrial heating.

Suggested Citation

  • Ji, Qiang & Pan, Tengxiang & Li, Yizhen & Che, Chunwen & Huang, Gongsheng & Yin, Yonggao, 2025. "Thermal gradient optimization in independent cascade heat pumps for efficient ultra-high temperature heating," Applied Energy, Elsevier, vol. 384(C).
  • Handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925002326
    DOI: 10.1016/j.apenergy.2025.125502
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925002326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ji, Qiang & Che, Chunwen & Yin, Yonggao & Huang, Gongsheng & Pan, Tengxiang & Zhao, Donglin & Wang, Yikai, 2024. "Optimizing working fluids for advancing industrial heating performance of compression-absorption cascade heat pump," Applied Energy, Elsevier, vol. 376(PB).
    2. Ji, Qiang & Wang, Yikai & Yin, Yonggao & Wang, Mu & Che, Chunwen & Cao, Bowen & Chen, Wanhe, 2023. "Cooling performance of compression-absorption cascade system with novel ternary ionic-liquid working pair," Energy, Elsevier, vol. 278(PB).
    3. Jung, Chung Woo & An, Seung Sun & Kang, Yong Tae, 2014. "Thermal performance estimation of ammonia-water plate bubble absorbers for compression/absorption hybrid heat pump application," Energy, Elsevier, vol. 75(C), pages 371-378.
    4. Ji, Qiang & Han, Zongwei & Li, Xiuming & Yang, Lingyan, 2022. "Energy and economic evaluation of the air source hybrid heating system driven by off-peak electric thermal storage in cold regions," Renewable Energy, Elsevier, vol. 182(C), pages 69-85.
    5. You, Jinfang & Zhang, Xi & Gao, Jintong & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Entransy based heat exchange irreversibility analysis for a hybrid absorption-compression heat pump cycle," Energy, Elsevier, vol. 289(C).
    6. Sui, Yunren & Wu, Wei, 2023. "Ionic liquid screening and performance optimization of transcritical carbon dioxide absorption heat pump enhanced by expander," Energy, Elsevier, vol. 263(PA).
    7. Jia, Teng & Dou, Pengbo & Chu, Peng & Dai, Yanjun, 2020. "Proposal and performance analysis of a novel solar-assisted resorption-subcooled compression hybrid heat pump system for space heating in cold climate condition," Renewable Energy, Elsevier, vol. 150(C), pages 1136-1150.
    8. Dong, Li & Zheng, Danxing & Nie, Nan & Li, Yun, 2012. "Performance prediction of absorption refrigeration cycle based on the measurements of vapor pressure and heat capacity of H2O+[DMIM]DMP system," Applied Energy, Elsevier, vol. 98(C), pages 326-332.
    9. Zhao, Shuai & Li, Xiuzhen & Wang, Lin & Chang, Minghui, 2025. "State-space model development and dynamic performance simulation of solar-powered single-effect LiBr-H2O absorption chiller," Renewable Energy, Elsevier, vol. 241(C).
    10. Jiang, Jiatong & Hu, Bin & Ge, Tianshu & Wang, R.Z., 2022. "Comprehensive selection and assessment methodology of compression heat pump system," Energy, Elsevier, vol. 241(C).
    11. Zhang, Xi & Hu, Bin & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Performance enhancement of hybrid absorption-compression heat pump via internal heat recovery," Energy, Elsevier, vol. 286(C).
    12. Han, Zongwei & Ji, Qiang & Wei, Haotian & Xue, Da & Sun, Xiaoqing & Zhang, Xueping & Li, Xiuming, 2020. "Simulation study on performance of data center air-conditioning system with novel evaporative condenser," Energy, Elsevier, vol. 210(C).
    13. Zhai, Chong & Wu, Wei, 2022. "Energetic, exergetic, economic, and environmental analysis of microchannel membrane-based absorption refrigeration system driven by various energy sources," Energy, Elsevier, vol. 239(PB).
    14. Cao, Bowen & Yin, Yonggao & Xu, Guoying & Cheng, Xiaosong & Li, Wenzhang & Ji, Qiang & Chen, Wanhe, 2023. "A proposed method of bubble absorption-based deep dehumidification using the ionic liquid for low-humidity industrial environments with experimental performance," Applied Energy, Elsevier, vol. 348(C).
    15. Wu, Wei & Zhai, Chong & Huang, Si-Min & Sui, Yunren & Sui, Zengguang & Ding, Zhixiong, 2022. "A hybrid H2O/IL absorption and CO2 compression air-source heat pump for ultra-low ambient temperatures," Energy, Elsevier, vol. 239(PB).
    16. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2020. "Experimental study on a double-stage absorption solar thermal storage system with enhanced energy storage density," Applied Energy, Elsevier, vol. 262(C).
    18. Wu, Wencong & Du, Yuji & Qian, Huijin & Fan, Haibin & Jiang, Zhu & Huang, Shifang & Zhang, Xiaosong, 2024. "Industrial Park low-carbon energy system planning framework: Heat pump based energy conjugation between industry and buildings," Applied Energy, Elsevier, vol. 369(C).
    19. Abdussami, Muhammad R. & Verma, Aditi, 2025. "Future energy landscapes: Analyzing the cost-effectiveness of nuclear-renewable integrated energy Systems in Retrofitting of coal power plants," Applied Energy, Elsevier, vol. 377(PA).
    20. Jia, Teng & Dai, Enqian & Dai, Yanjun, 2019. "Thermodynamic analysis and optimization of a balanced-type single-stage NH3-H2O absorption-resorption heat pump cycle for residential heating application," Energy, Elsevier, vol. 171(C), pages 120-134.
    21. Sui, Yunren & Lin, Haosheng & Ding, Zhixiong & Li, Fuxiang & Sui, Zengguang & Wu, Wei, 2024. "Compact, efficient, and affordable absorption Carnot battery for long-term renewable energy storage," Applied Energy, Elsevier, vol. 357(C).
    22. Feng, Jiayu & Gao, Jintong & Hu, Bin & Wang, Ruzhu & Xu, Zhenyuan, 2024. "A mass-coupled hybrid absorption-compression heat pump with output temperature of 200 °C," Energy, Elsevier, vol. 312(C).
    23. Meng, Xuelin & Zheng, Danxing & Wang, Jianzhao & Li, Xinru, 2013. "Energy saving mechanism analysis of the absorption–compression hybrid refrigeration cycle," Renewable Energy, Elsevier, vol. 57(C), pages 43-50.
    24. Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2021. "An air-source hybrid absorption-compression heat pump with large temperature lift," Applied Energy, Elsevier, vol. 291(C).
    25. Xu, Z.Y. & Gao, J.T. & Hu, Bin & Wang, R.Z., 2022. "Multi-criterion comparison of compression and absorption heat pumps for ultra-low grade waste heat recovery," Energy, Elsevier, vol. 238(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Qiang & Che, Chunwen & Yin, Yonggao & Huang, Gongsheng & Pan, Tengxiang & Zhao, Donglin & Wang, Yikai, 2024. "Optimizing working fluids for advancing industrial heating performance of compression-absorption cascade heat pump," Applied Energy, Elsevier, vol. 376(PB).
    2. Wei, Junzhuo & Wu, Di & Wang, Ruzhu, 2025. "A Multi-Objective evolutionary algorithm-based optimization framework for hybrid absorption-compression heat pump systems," Applied Energy, Elsevier, vol. 382(C).
    3. Ji, Qiang & Wang, Yikai & Yin, Yonggao & Wang, Mu & Che, Chunwen & Cao, Bowen & Chen, Wanhe, 2023. "Cooling performance of compression-absorption cascade system with novel ternary ionic-liquid working pair," Energy, Elsevier, vol. 278(PB).
    4. Sui, Yunren & Ding, Zhixiong & Sui, Zengguang & Lin, Haosheng & Li, Fuxiang & Wu, Wei, 2025. "Seasonal Thermochemical Energy Storage with Affordable and High-Energy-Density Deep Eutectic Solvents," Applied Energy, Elsevier, vol. 386(C).
    5. Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2021. "An air-source hybrid absorption-compression heat pump with large temperature lift," Applied Energy, Elsevier, vol. 291(C).
    6. Wang, Ruzhu & Yan, Hongzhi & Wu, Di & Jiang, Jiatong & Dong, Yixiu, 2024. "High temperature heat pumps for industrial heating processes using water as refrigerant," Energy, Elsevier, vol. 313(C).
    7. Wu, Wei & Zhai, Chong & Huang, Si-Min & Sui, Yunren & Sui, Zengguang & Ding, Zhixiong, 2022. "A hybrid H2O/IL absorption and CO2 compression air-source heat pump for ultra-low ambient temperatures," Energy, Elsevier, vol. 239(PB).
    8. Zhang, Xi & Hu, Bin & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Performance enhancement of hybrid absorption-compression heat pump via internal heat recovery," Energy, Elsevier, vol. 286(C).
    9. Ding, Zhixiong & Wu, Wei, 2024. "Simulation of a multi-level absorption thermal battery with variable solution flow rate for adjustable cooling capacity," Energy, Elsevier, vol. 301(C).
    10. Liu, Zhongyi & Hu, Bin & Wu, Di & Wang, Ruzhu, 2025. "Electrification and decarbonization in global brewing industry driven by industrial heat pumps," Energy, Elsevier, vol. 325(C).
    11. Dou, Pengbo & Jia, Teng & Chu, Peng & Dai, Yanjun & Shou, Chunhui, 2022. "Performance analysis of no-insulation long distance thermal transportation system based on single-stage absorption-resorption cycle," Energy, Elsevier, vol. 243(C).
    12. Li, Renpeng & Wang, Ruzhu & Xu, Zhenyuan, 2025. "Combined absorption desalination-refrigeration cycle driven by low temperature heat source," Energy, Elsevier, vol. 327(C).
    13. You, Jinfang & Gao, Jintong & Li, Renpeng & Wang, Ruzhu & Xu, Zhenyuan, 2025. "Air-source heat pump assisted absorption heat storage for discharging under low ambient temperature," Applied Energy, Elsevier, vol. 380(C).
    14. Zhang, Shuangshuang & Yu, Wenjing & Wang, Dechang & Song, Qinglu & Zhou, Sai & Li, Jinping & Li, Yanhui, 2024. "Thermodynamic characteristics of a novel solar single and double effect absorption refrigeration cycle," Energy, Elsevier, vol. 308(C).
    15. Liu, Yishuang & Qu, Shengli & Shen, Shaofeng & Feng, Yiwei & Sun, Tianrui & Wang, Chuang & Xing, Ziwen, 2025. "Experimental investigation on the large temperature lift heat pump with an integrated two-stage independently variable frequency compressor," Energy, Elsevier, vol. 314(C).
    16. Dou, Pengbo & Jia, Teng & Chu, Peng & Dai, Yanjun, 2024. "Experimental investigation of two-stage NH3–H2O resorption heat storage system with solution concentration difference," Energy, Elsevier, vol. 304(C).
    17. Sui, Yunren & Wu, Wei, 2023. "Ionic liquid screening and performance optimization of transcritical carbon dioxide absorption heat pump enhanced by expander," Energy, Elsevier, vol. 263(PA).
    18. Sui, Yunren & Lin, Haosheng & Ding, Zhixiong & Li, Fuxiang & Sui, Zengguang & Wu, Wei, 2024. "Compact, efficient, and affordable absorption Carnot battery for long-term renewable energy storage," Applied Energy, Elsevier, vol. 357(C).
    19. Jia, Teng & Dou, Pengbo & Chen, Erjian & Dai, Yanjun, 2022. "Feasibility and performance analysis of a hybrid GAX-based absorption-compression heat pump system for space heating in extremely cold climate conditions," Energy, Elsevier, vol. 242(C).
    20. Wu, Di & Wei, Junzhuo & Wang, R.Z., 2025. "Performance investigation of a new hybrid high-temperature heat PUMP with natural water medium," Energy, Elsevier, vol. 314(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925002326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.