IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipbs0360544223014123.html
   My bibliography  Save this article

Cooling performance of compression-absorption cascade system with novel ternary ionic-liquid working pair

Author

Listed:
  • Ji, Qiang
  • Wang, Yikai
  • Yin, Yonggao
  • Wang, Mu
  • Che, Chunwen
  • Cao, Bowen
  • Chen, Wanhe

Abstract

The compression-absorption cascade system (CACS) is an efficient way to use waste heat or renewable energy. However, most of the current studies are all based on heating scenarios, and the cooling characteristics of CACS have not been reported. In terms of absorption working pairs, ionic liquids (ILs) have great potential to become alternative working fluids for absorption systems, but one of the factors restricting the large-scale application is their high price. Seeking effective strategies to reduce economic constraints while ensuring the excellent performance of IL working pairs will become a hot topic in the future. In order to overcome the application limit of ILs, a feasible strategy is proposed which the relatively cheap salt is used to replace part of the expensive IL and they are employed together as the absorbent. In this work, the vapor-liquid equilibrium data of novel IL working fluid LiBr/[EMIM][OAC]/H2O is measured experimentally, and the cooling performance of CACS with the proposed working pair is analyzed. The results show that the cooling efficiency of CACS is 0.738–0.849, which is commonly higher than traditional absorption chillers. As for comparing with reference working fluids, the novel working pair can improve the maximum performance by 1.80%–46.81%. In addition, the crystallization problem can be overcome to some extent compared with LiBr/H2O under the same absorption ability, and as for comparing with [EMIM][OAC]/H2O, the economic limitation can be alleviated. This work can be used to ease the economic limit of ILs due to the immature market right now, and give a reference for seeking a satisfactory cooling method of buildings in the context of carbon neutrality.

Suggested Citation

  • Ji, Qiang & Wang, Yikai & Yin, Yonggao & Wang, Mu & Che, Chunwen & Cao, Bowen & Chen, Wanhe, 2023. "Cooling performance of compression-absorption cascade system with novel ternary ionic-liquid working pair," Energy, Elsevier, vol. 278(PB).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223014123
    DOI: 10.1016/j.energy.2023.128018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223014123
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei & Xu, Chenbin & Wu, Haibo & Bai, Yang & Li, Zoulu & Zhang, Bin, 2020. "Energy and exergy analyses of a novel hybrid system consisting of a phosphoric acid fuel cell and a triple-effect compression–absorption refrigerator with [mmim]DMP/CH3OH as working fluid," Energy, Elsevier, vol. 195(C).
    2. Sui, Yunren & Wu, Wei, 2023. "Ionic liquid screening and performance optimization of transcritical carbon dioxide absorption heat pump enhanced by expander," Energy, Elsevier, vol. 263(PA).
    3. Dong, Li & Zheng, Danxing & Nie, Nan & Li, Yun, 2012. "Performance prediction of absorption refrigeration cycle based on the measurements of vapor pressure and heat capacity of H2O+[DMIM]DMP system," Applied Energy, Elsevier, vol. 98(C), pages 326-332.
    4. Zhou, Xia & Zhang, Hanwei & Rong, Yangyiming & Song, Jian & Fang, Song & Xu, Zhuoren & Zhi, Xiaoqin & Wang, Kai & Qiu, Limin & Markides, Christos N., 2022. "Comparative study for air compression heat recovery based on organic Rankine cycle (ORC) in cryogenic air separation units," Energy, Elsevier, vol. 255(C).
    5. Wu, Shenyi & Rincon Ortiz, Camilo, 2020. "Experimental investigation of the effect of magnetic field on vapour absorption with LiBr–H2O nanofluid," Energy, Elsevier, vol. 193(C).
    6. Wu, Wei & Zhai, Chong & Huang, Si-Min & Sui, Yunren & Sui, Zengguang & Ding, Zhixiong, 2022. "A hybrid H2O/IL absorption and CO2 compression air-source heat pump for ultra-low ambient temperatures," Energy, Elsevier, vol. 239(PB).
    7. Luo, Chunhuan & Wang, Yanan & Li, Yiqun & Wu, Yongjian & Su, Qingquan & Hu, Tianyu, 2019. "Thermodynamic properties and application of LiNO3-[MMIM][DMP]/H2O ternary working pair," Renewable Energy, Elsevier, vol. 134(C), pages 147-160.
    8. Ding, Zhixiong & Wu, Wei, 2022. "A novel double-effect compression-assisted absorption thermal battery with high storage performance for thermal energy storage," Renewable Energy, Elsevier, vol. 191(C), pages 902-918.
    9. Zhai, Chong & Wu, Wei, 2022. "Energetic, exergetic, economic, and environmental analysis of microchannel membrane-based absorption refrigeration system driven by various energy sources," Energy, Elsevier, vol. 239(PB).
    10. Hu, Zheng & Wan, Yueru & Zhang, Chengbin & Chen, Yongping, 2022. "Compression-assisted absorption refrigeration using ocean thermal energy," Renewable Energy, Elsevier, vol. 186(C), pages 755-768.
    11. Fragkos, Panagiotis & Laura van Soest, Heleen & Schaeffer, Roberto & Reedman, Luke & Köberle, Alexandre C. & Macaluso, Nick & Evangelopoulou, Stavroula & De Vita, Alessia & Sha, Fu & Qimin, Chai & Kej, 2021. "Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States," Energy, Elsevier, vol. 216(C).
    12. Xu, Z.Y. & Gao, J.T. & Hu, Bin & Wang, R.Z., 2022. "Multi-criterion comparison of compression and absorption heat pumps for ultra-low grade waste heat recovery," Energy, Elsevier, vol. 238(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Zhixiong & Wu, Wei & Huang, Si-Min & Huang, Hongyu & Bai, Yu & He, Zhaohong, 2023. "A novel compression-assisted energy storage heat transformer for low-grade renewable energy utilization," Energy, Elsevier, vol. 263(PA).
    2. Ji, Qiang & Han, Zongwei & Li, Xiuming & Yang, Lingyan, 2022. "Energy and economic evaluation of the air source hybrid heating system driven by off-peak electric thermal storage in cold regions," Renewable Energy, Elsevier, vol. 182(C), pages 69-85.
    3. Sui, Yunren & Wu, Wei, 2023. "Ionic liquid screening and performance optimization of transcritical carbon dioxide absorption heat pump enhanced by expander," Energy, Elsevier, vol. 263(PA).
    4. Hu, Zheng & Deng, Zilong & Gao, Wei & Chen, Yongping, 2023. "Experimental study of the absorption refrigeration using ocean thermal energy and its under-lying prospects," Renewable Energy, Elsevier, vol. 213(C), pages 47-62.
    5. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    6. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
    7. Zhou, Xia & Fang, Song & Zhang, Hanwei & Xu, Zhuoren & Jiang, Hanying & Rong, Yangyiming & Wang, Kai & Zhi, Xiaoqin & Qiu, Limin, 2023. "Dynamic characteristics of a mechanically coupled organic Rankine-vapor compression system for heat-driven cooling," Energy, Elsevier, vol. 280(C).
    8. Chen, Wei & Chenbin, Xu & Wu, Haibo & Li, Zoulu & Zhang, Bin & Yan, He, 2021. "Thermal analysis and optimization of combined cold and power system with integrated phosphoric acid fuel cell and two-stage compression–absorption refrigerator at low evaporation temperature," Energy, Elsevier, vol. 216(C).
    9. Icaza-Alvarez, Daniel & Jurado, Francisco & Tostado-Véliz, Marcos & Arevalo, Paúl, 2022. "Decarbonization of the Galapagos Islands. Proposal to transform the energy system into 100% renewable by 2050," Renewable Energy, Elsevier, vol. 189(C), pages 199-220.
    10. Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2021. "An air-source hybrid absorption-compression heat pump with large temperature lift," Applied Energy, Elsevier, vol. 291(C).
    11. Fragkos, Panagiotis & Fragkiadakis, Kostas & Sovacool, Benjamin & Paroussos, Leonidas & Vrontisi, Zoi & Charalampidis, Ioannis, 2021. "Equity implications of climate policy: Assessing the social and distributional impacts of emission reduction targets in the European Union," Energy, Elsevier, vol. 237(C).
    12. Cassetti, Gabriele & Boitier, Baptiste & Elia, Alessia & Le Mouël, Pierre & Gargiulo, Maurizio & Zagamé, Paul & Nikas, Alexandros & Koasidis, Konstantinos & Doukas, Haris & Chiodi, Alessandro, 2023. "The interplay among COVID-19 economic recovery, behavioural changes, and the European Green Deal: An energy-economic modelling perspective," Energy, Elsevier, vol. 263(PC).
    13. Arshi Banu, P.S. & Sudharsan, N.M., 2018. "Review of water based vapour absorption cooling systems using thermodynamic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3750-3761.
    14. Cong Jiao & Zeyu Li, 2023. "An Updated Review of Solar Cooling Systems Driven by Photovoltaic–Thermal Collectors," Energies, MDPI, vol. 16(14), pages 1-34, July.
    15. Min, Haye & Choi, Hyung Won & Jeong, Jaehui & Jeong, Jinhee & Kim, Young & Kang, Yong Tae, 2023. "Daily sorption thermal battery cycle for building applications," Energy, Elsevier, vol. 282(C).
    16. Madruga, Santiago & Mendoza, Carolina, 2022. "Introducing a new concept for enhanced micro-energy harvesting of thermal fluctuations through the Marangoni effect," Applied Energy, Elsevier, vol. 306(PA).
    17. Wu, Wei & Bai, Yu & Huang, Hongyu & Ding, Zhixiong & Deng, Lisheng, 2019. "Charging and discharging characteristics of absorption thermal energy storage using ionic-liquid-based working fluids," Energy, Elsevier, vol. 189(C).
    18. Wang, Hanbin & Luo, Chunhuan & Zhang, Rudan & Li, Yongsheng & Yang, Changchang & Li, Zexiang & Li, Jianhao & Li, Na & Li, Yiqun & Su, Qingquan, 2023. "Experiment and performance evaluation of an integrated low-temperature proton exchange membrane fuel cell system with an absorption chiller," Renewable Energy, Elsevier, vol. 215(C).
    19. Geovo, Leonardo & Ri, Guilherme Dal & Kumar, Rahul & Verma, Sujit Kumar & Roberts, Justo J. & Mendiburu, Andrés Z., 2023. "Theoretical model for flat plate solar collectors operating with nanofluids: Case study for Porto Alegre, Brazil," Energy, Elsevier, vol. 263(PB).
    20. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223014123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.