IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6245-d899068.html
   My bibliography  Save this article

How Much Excess Heat Might Be Used in Buildings? A Spatial Analysis at the Municipal Level in Germany

Author

Listed:
  • Markus Fritz

    (Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Strasse 48, 76139 Karlsruhe, Germany
    Chair of Material Flow Management and Resource Economy, Institute IWAR, Technical University of Darmstadt, 64287 Darmstadt, Germany)

  • Ali Aydemir

    (Chair of Material Flow Management and Resource Economy, Institute IWAR, Technical University of Darmstadt, 64287 Darmstadt, Germany)

  • Liselotte Schebek

    (Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Strasse 48, 76139 Karlsruhe, Germany)

Abstract

Excess heat can make an important contribution to reduce greenhouse gas emissions in the heating and cooling sector. Due to the local character of heat, the local excess heat potential is decisive for using excess heat. However, the spatially distributed potential and the subdivision of the potential into different subsectors have not been sufficiently investigated in Germany. Here we analyse the excess heat potential in Germany according to different subsectors and spatially distributed to the municipal level. We use data of more than 115,000 records on exhaust gas and fuel input from over 11,000 industrial sites. We calculate the site-specific excess heat potential and check its plausibility using the fuel input of the respective industrial sites. Finally, we compare the excess heat potential with the residential heat demand at the municipal level. Our results show that the excess heat potential in Germany is about 36.6 TWh/a, and that in 148 municipalities, the annual excess heat potential is greater than 50% of the annual heat demand. In conclusion, there is a large potential for excess heat utilisation in Germany. In some regions, more excess heat is available throughout the year than is needed to provide space heat and hot water.

Suggested Citation

  • Markus Fritz & Ali Aydemir & Liselotte Schebek, 2022. "How Much Excess Heat Might Be Used in Buildings? A Spatial Analysis at the Municipal Level in Germany," Energies, MDPI, vol. 15(17), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6245-:d:899068
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Forman, Clemens & Muritala, Ibrahim Kolawole & Pardemann, Robert & Meyer, Bernd, 2016. "Estimating the global waste heat potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1568-1579.
    2. Persson, U. & Möller, B. & Werner, S., 2014. "Heat Roadmap Europe: Identifying strategic heat synergy regions," Energy Policy, Elsevier, vol. 74(C), pages 663-681.
    3. Fang, Hao & Xia, Jianjun & Zhu, Kan & Su, Yingbo & Jiang, Yi, 2013. "Industrial waste heat utilization for low temperature district heating," Energy Policy, Elsevier, vol. 62(C), pages 236-246.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fritz, Markus & Werner, Dorian, 2022. "Industrial excess heat and residential heating: Potentials and costs based on different heat transport technologies," Working Papers "Sustainability and Innovation" S11/2022, Fraunhofer Institute for Systems and Innovation Research (ISI).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chambers, Jonathan & Zuberi, S. & Jibran, M. & Narula, Kapil & Patel, Martin K., 2020. "Spatiotemporal analysis of industrial excess heat supply for district heat networks in Switzerland," Energy, Elsevier, vol. 192(C).
    2. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    3. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    4. Luo, Ao & Fang, Hao & Xia, Jianjun & Lin, Borong & jiang, Yi, 2017. "Mapping potentials of low-grade industrial waste heat in Northern China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 335-348.
    5. Ma, Hongting & Du, Na & Zhang, Zeyu & Lyu, Fan & Deng, Na & Li, Cong & Yu, Shaojie, 2017. "Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 50-60.
    6. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    7. Borna Doračić & Tomislav Novosel & Tomislav Pukšec & Neven Duić, 2018. "Evaluation of Excess Heat Utilization in District Heating Systems by Implementing Levelized Cost of Excess Heat," Energies, MDPI, vol. 11(3), pages 1-14, March.
    8. Adriana Reyes-Lúa & Julian Straus & Vidar T. Skjervold & Goran Durakovic & Tom Ståle Nordtvedt, 2021. "A Novel Concept for Sustainable Food Production Utilizing Low Temperature Industrial Surplus Heat," Sustainability, MDPI, vol. 13(17), pages 1-23, August.
    9. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    10. Lygnerud, Kristina & Werner, Sven, 2018. "Risk assessment of industrial excess heat recovery in district heating systems," Energy, Elsevier, vol. 151(C), pages 430-441.
    11. Zuberi, M. Jibran S. & Bless, Frédéric & Chambers, Jonathan & Arpagaus, Cordin & Bertsch, Stefan S. & Patel, Martin K., 2018. "Excess heat recovery: An invisible energy resource for the Swiss industry sector," Applied Energy, Elsevier, vol. 228(C), pages 390-408.
    12. Pia Manz & Katerina Kermeli & Urban Persson & Marius Neuwirth & Tobias Fleiter & Wina Crijns-Graus, 2021. "Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites?," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    13. Lingwei Zhang & Yufei Wang & Xiao Feng, 2021. "A Framework for Design and Operation Optimization for Utilizing Low-Grade Industrial Waste Heat in District Heating and Cooling," Energies, MDPI, vol. 14(8), pages 1-21, April.
    14. Karner, Katharina & Theissing, Matthias & Kienberger, Thomas, 2017. "Modeling of energy efficiency increase of urban areas through synergies with industries," Energy, Elsevier, vol. 136(C), pages 201-209.
    15. Weinand, Jann & McKenna, Russell & Karner, Katharina & Braun, Lorenz & Herbes, Carsten, 2018. "Assessing the potential contribution of excess heat from biogas plants towards decarbonising German residential heating," Working Paper Series in Production and Energy 31, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    16. Zhang, Yichi & Xia, Jianjun & Fang, Hao & Zuo, Hetao & Jiang, Yi, 2019. "Roadmap towards clean heating in 2035: Case study of inner Mongolia, China," Energy, Elsevier, vol. 189(C).
    17. Petri Penttinen & Jussi Vimpari & Seppo Junnila, 2021. "Optimal Seasonal Heat Storage in a District Heating System with Waste Incineration," Energies, MDPI, vol. 14(12), pages 1-15, June.
    18. Jodeiri, A.M. & Goldsworthy, M.J. & Buffa, S. & Cozzini, M., 2022. "Role of sustainable heat sources in transition towards fourth generation district heating – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    20. Doračić, Borna & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2020. "The effect of different parameters of the excess heat source on the levelized cost of excess heat," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6245-:d:899068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.