IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p4941-d856818.html
   My bibliography  Save this article

Bioengineering and Molecular Biology of Miscanthus

Author

Listed:
  • Evgeny Chupakhin

    (Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia)

  • Olga Babich

    (Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia)

  • Stanislav Sukhikh

    (Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia)

  • Svetlana Ivanova

    (Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
    Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia)

  • Ekaterina Budenkova

    (Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia)

  • Olga Kalashnikova

    (Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia)

  • Alexander Prosekov

    (Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia)

  • Olga Kriger

    (Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia)

  • Vyacheslav Dolganyuk

    (Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia
    Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia)

Abstract

Miscanthus is a perennial wild plant that is vital for the production of paper and roofing, as well as horticulture and the development of new high-yielding crops in temperate climates. Chromosome-level assembly of the ancient tetraploid genome of miscanthus chromosomes is reported to provide resources that can link its chromosomes to related diploid sorghum and complex polyploid sugarcane. Analysis of Miscanthus sinensis and Miscanthus sacchariflorus showed intense mixing and interspecific hybridization and documented the origin of a high-yielding triploid bioenergetic plant, Miscanthus × giganteus . The Miscanthus genome expands comparative genomics functions to better understand the main abilities of Andropogoneae herbs. Miscanthus × giganteus is widely regarded as a promising lignocellulosic biomass crop due to its high-biomass yield, which does not emit toxic compounds into the environment, and ability to grow in depleted lands. The high production cost of lignocellulosic bioethanol limits its commercialization. The main components that inhibit the enzymatic reactions of fermentation and saccharification are lignin in the cell wall and its by-products released during the pre-treatment stage. One approach to overcoming this barrier could be to genetically modify the genes involved in lignin biosynthesis, manipulating the lignin content and composition of miscanthus.

Suggested Citation

  • Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4941-:d:856818
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/4941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/4941/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaime Barros & Luis Escamilla-Trevino & Luhua Song & Xiaolan Rao & Juan Carlos Serrani-Yarce & Maite Docampo Palacios & Nancy Engle & Feroza K. Choudhury & Timothy J. Tschaplinski & Barney J. Venables, 2019. "4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Olga Kriger, 2021. "Methods of Increasing Miscanthus Biomass Yield for Biofuel Production," Energies, MDPI, vol. 14(24), pages 1-30, December.
    3. Emily Heaton & Stephen Long & Thomas Voigt & Michael Jones & John Clifton-Brown, 2004. "Miscanthus for Renewable Energy Generation: European Union Experience and Projections for Illinois," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 9(4), pages 433-451, October.
    4. Marc A. Rosen & Hossam A. Kishawy, 2012. "Sustainable Manufacturing and Design: Concepts, Practices and Needs," Sustainability, MDPI, vol. 4(2), pages 1-21, January.
    5. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    2. Pablo David Necoechea-Porras & Asunción López & Juan Carlos Salazar-Elena, 2021. "Deregulation in the Energy Sector and Its Economic Effects on the Power Sector: A Literature Review," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    3. Robert Perlack, Robert & Eaton, Lawrence & Thurhollow, Anthony & Langholtz, Matt & De La Torre Ugarte, Daniel, 2011. "US billion-ton update: biomass supply for a bioenergy and bioproducts industry," MPRA Paper 89324, University Library of Munich, Germany, revised 2011.
    4. Tianqin Shi & Dilip Chhajed & Zhixi Wan & Yunchuan Liu, 2020. "Distribution Channel Choice and Divisional Conflict in Remanufacturing Operations," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1702-1719, July.
    5. Tze San Ong & Boon Heng Teh & Ah Suat Lee, 2019. "Contingent Factors and Sustainable Performance Measurement (SPM) Practices of Malaysian Electronics and Electrical Companies," Sustainability, MDPI, vol. 11(4), pages 1-33, February.
    6. Simona Domazetovska & Vladimir Strezov & Risto V. Filkoski & Tao Kan, 2023. "Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    7. Giancarlo Nota & Francesco David Nota & Domenico Peluso & Alonso Toro Lazo, 2020. "Energy Efficiency in Industry 4.0: The Case of Batch Production Processes," Sustainability, MDPI, vol. 12(16), pages 1-28, August.
    8. Gaurav Gaurav & Govind Sharan Dangayach & Makkhan Lal Meena & Vijay Chaudhary & Sumit Gupta & Sandeep Jagtap, 2023. "The Environmental Impacts of Bar Soap Production: Uncovering Sustainability Risks with LCA Analysis," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    9. Bang-Ning Hwang & Chi-Yo Huang & Chih-Hsiung Wu, 2016. "A TOE Approach to Establish a Green Supply Chain Adoption Decision Model in the Semiconductor Industry," Sustainability, MDPI, vol. 8(2), pages 1-30, February.
    10. Marc A. Rosen, 2012. "Engineering Sustainability: A Technical Approach to Sustainability," Sustainability, MDPI, vol. 4(9), pages 1-23, September.
    11. Walter Chipambwa & Richie Moalosi & Yaone Rapitsenyane & Olefile Bethuel Molwane, 2023. "Sustainable Design Orientation in Furniture-Manufacturing SMEs in Zimbabwe," Sustainability, MDPI, vol. 15(9), pages 1-14, May.
    12. Yang Ni & Bin Peng & Jiayao Wang & Farshad Golnary & Wei Li, 2023. "A Short Review on the Time-Domain Numerical Simulations for Structural Responses in Horizontal-Axis Offshore Wind Turbines," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    13. Tygran Dzhuguryan & Agnieszka Deja, 2021. "Sustainable Waste Management for a City Multifloor Manufacturing Cluster: A Framework for Designing a Smart Supply Chain," Sustainability, MDPI, vol. 13(3), pages 1-25, February.
    14. Evgeniya I. Lysakova & Andrey V. Minakov & Angelica D. Skorobogatova, 2023. "Effect of Nanoparticle and Carbon Nanotube Additives on Thermal Stability of Hydrocarbon-Based Drilling Fluids," Energies, MDPI, vol. 16(19), pages 1-20, September.
    15. Lu Wang & Zhijun Jin & Xiaowei Huang & Runchao Liu & Yutong Su & Qian Zhang, 2024. "Hydrogen Adsorption in Porous Geological Materials: A Review," Sustainability, MDPI, vol. 16(5), pages 1-21, February.
    16. Rafael Ninno Muniz & Carlos Tavares da Costa Júnior & William Gouvêa Buratto & Ademir Nied & Gabriel Villarrubia González, 2023. "The Sustainability Concept: A Review Focusing on Energy," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    17. César Ramírez-Márquez & Thelma Posadas-Paredes & Alma Yunuen Raya-Tapia & José María Ponce-Ortega, 2024. "Natural Resource Optimization and Sustainability in Society 5.0: A Comprehensive Review," Resources, MDPI, vol. 13(2), pages 1-20, January.
    18. Youchan Kim & Kisung Lim & Hassan Salihi & Seongku Heo & Hyunchul Ju, 2023. "The Effects of Stack Configurations on the Thermal Management Capabilities of Solid Oxide Electrolysis Cells," Energies, MDPI, vol. 17(1), pages 1-20, December.
    19. Mohammed S. Almuhayawi & Elhagag A. Hassan & Saad Almasaudi & Nidal Zabermawi & Esam I. Azhar & Azhar Najjar & Khalil Alkuwaity & Turki S. Abujamel & Turki Alamri & Steve Harakeh, 2023. "Biodiesel Production through Rhodotorula toruloides Lipids and Utilization of De-Oiled Biomass for Congo Red Removal," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    20. Xiaoxia Chen & Mélanie Despeisse & Björn Johansson, 2020. "Environmental Sustainability of Digitalization in Manufacturing: A Review," Sustainability, MDPI, vol. 12(24), pages 1-31, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4941-:d:856818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.