IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v87y2016ip3p1053-1058.html
   My bibliography  Save this article

Performance of a solar air composite heat source heat pump system

Author

Listed:
  • Liu, Yin
  • Ma, Jing
  • Zhou, Guanghui
  • Zhang, Chao
  • Wan, Wenlei

Abstract

For the shortcoming of air source heat pump in heating condition, a composite heat exchanger was designed which integrates fin tube and tube heat exchanger, and it can achieve synchronous and composite heat exchange in one heat exchanger between working fluids, gaseous and liquid heat source. With the above composite heat exchanger as the core component, the Solar Air Composite Heat Source Heat Pump System (SACHP) was developed which has three working modes, including single solar heat source mode, single air heat source mode and solar air dual heat sources mode. A SACHP experiment table was established and conducted a comprehensive experimental study of three working modes of this system in the standard enthalpy difference laboratory. The results show that when the ambient temperature was −15 °C, compared to the single air heat source mode, the dual heat source mode increased 62% in heat capacity and 59% in COP; when the temperature difference of combined heat transfer was 5 °C, compared to the single air heat source mode, the dual heat source mode increased 51% in heat capacity and 49% in COP. Experimental results demonstrate that the application of the solar air composite heat pump technology can accelerate the application process of the solar heat pump in air conditioners for buildings.

Suggested Citation

  • Liu, Yin & Ma, Jing & Zhou, Guanghui & Zhang, Chao & Wan, Wenlei, 2016. "Performance of a solar air composite heat source heat pump system," Renewable Energy, Elsevier, vol. 87(P3), pages 1053-1058.
  • Handle: RePEc:eee:renene:v:87:y:2016:i:p3:p:1053-1058
    DOI: 10.1016/j.renene.2015.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115302810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lohani, S.P. & Schmidt, D., 2010. "Comparison of energy and exergy analysis of fossil plant, ground and air source heat pump building heating system," Renewable Energy, Elsevier, vol. 35(6), pages 1275-1282.
    2. Badescu, Viorel, 2002. "Model of a space heating system integrating a heat pump, photothermal collectors and solar cells," Renewable Energy, Elsevier, vol. 27(4), pages 489-505.
    3. Moreno, Pere & Solé, Cristian & Castell, Albert & Cabeza, Luisa F., 2014. "The use of phase change materials in domestic heat pump and air-conditioning systems for short term storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1-13.
    4. Ji, Jie & Pei, Gang & Chow, Tin-tai & He, Wei & Zhang, Aifeng & Dong, Jun & Yi, Hua, 2005. "Performance of multi-functional domestic heat-pump system," Applied Energy, Elsevier, vol. 80(3), pages 307-326, March.
    5. Zhu, Lin & Yu, Jianlin & Zhou, Mengliu & Wang, Xiao, 2014. "Performance analysis of a novel dual-nozzle ejector enhanced cycle for solar assisted air-source heat pump systems," Renewable Energy, Elsevier, vol. 63(C), pages 735-740.
    6. Amin, Zakaria Mohd. & Hawlader, M.N.A., 2013. "A review on solar assisted heat pump systems in Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 286-293.
    7. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    8. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    2. Dengxin Ai & Ke Xu & Heng Zhang & Tianheng Chen & Guilin Wang, 2022. "Simulation Research on a Cogeneration System of Low-Concentration Photovoltaic/Thermal Coupled with Air-Source Heat Pump," Energies, MDPI, vol. 15(3), pages 1-25, February.
    3. Das, Debayan & Lukose, Leo & Basak, Tanmay, 2018. "Role of multiple solar heaters along the walls for the thermal management during natural convection in square and triangular cavities," Renewable Energy, Elsevier, vol. 121(C), pages 205-229.
    4. Zhijian Liu & Di Wu & Miao Jiang & Hancheng Yu & Wensheng Ma, 2017. "Field Measurement and Evaluation of the Passive and Active Solar Heating Systems for Residential Building Based on the Qinghai-Tibetan Plateau Case," Energies, MDPI, vol. 10(11), pages 1-12, October.
    5. Zhang, Feng & Cai, Jingyong & Ji, Jie & Han, Kedong & Ke, Wei, 2020. "Experimental investigation on the heating and cooling performance of a solar air composite heat source heat pump," Renewable Energy, Elsevier, vol. 161(C), pages 221-229.
    6. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    7. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Comparative study on dual-source direct-expansion heat pumps based on different composite concentrating photovoltaic/fin evaporators," Applied Energy, Elsevier, vol. 306(PB).
    8. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2018. "Analysis on energy efficiency and CO2 emission reduction of an SOFC-based energy system served public buildings with large interior zones," Energy, Elsevier, vol. 165(PB), pages 1106-1118.
    9. Wang, Xinru & Xia, Liang & Bales, Chris & Zhang, Xingxing & Copertaro, Benedetta & Pan, Song & Wu, Jinshun, 2020. "A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources," Renewable Energy, Elsevier, vol. 146(C), pages 2472-2487.
    10. Xiang Gou & Yang Fu & Imran Ali Shah & Yamei Li & Guoyou Xu & Yue Yang & Enyu Wang & Liansheng Liu & Jinxiang Wu, 2016. "Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS," Energies, MDPI, vol. 9(12), pages 1-16, December.
    11. Chinnasamy, Subramaniyan & Arunachalam, Amarkarthik, 2023. "Experimental investigation on direct expansion solar-air source heat pump for water heating application," Renewable Energy, Elsevier, vol. 202(C), pages 222-233.
    12. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Research on the multifunction concentrated solar-air heat pump system," Renewable Energy, Elsevier, vol. 198(C), pages 679-694.
    13. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Liu, Zichu, 2022. "Performance and optimization of a novel solar-air source heat pump building energy supply system with energy storage," Applied Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    2. Lee, Seung Joo & Shon, Byung Hoon & Jung, Chung Woo & Kang, Yong Tae, 2018. "A novel type solar assisted heat pump using a low GWP refrigerant (R-1233zd(E)) with the flexible solar collector," Energy, Elsevier, vol. 149(C), pages 386-396.
    3. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Optimal control of heat pump water heater-instantaneous shower using integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 201(C), pages 332-342.
    4. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    5. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    6. Ni, Long & Dong, Jiankai & Yao, Yang & Shen, Chao & Qv, Dehu & Zhang, Xuedan, 2015. "A review of heat pump systems for heating and cooling of buildings in China in the last decade," Renewable Energy, Elsevier, vol. 84(C), pages 30-45.
    7. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2016. "Numerical simulation and experimental validation of indirect expansion solar-assisted multi-functional heat pump," Renewable Energy, Elsevier, vol. 93(C), pages 280-290.
    8. She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.
    9. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    10. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.
    11. Lv, Xiaolong & Yan, Gang & Yu, Jianlin, 2015. "Solar-assisted auto-cascade heat pump cycle with zeotropic mixture R32/R290 for small water heaters," Renewable Energy, Elsevier, vol. 76(C), pages 167-172.
    12. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Stanek, Wojciech & Simla, Tomasz & Gazda, Wiesław, 2019. "Exergetic and thermo-ecological assessment of heat pump supported by electricity from renewable sources," Renewable Energy, Elsevier, vol. 131(C), pages 404-412.
    14. Shao, Suola & Zhang, Huan & You, Shijun & Zheng, Wandong & Jiang, Lingfei, 2019. "Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system," Applied Energy, Elsevier, vol. 247(C), pages 78-88.
    15. Cong Zhou & Yizhen Li & Fenghao Wang & Zeyuan Wang & Qing Xia & Yuping Zhang & Jun Liu & Boyang Liu & Wanlong Cai, 2023. "A Review of the Performance Improvement Methods of Phase Change Materials: Application for the Heat Pump Heating System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    16. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    17. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Model predictive control of heat pump water heater-instantaneous shower powered with integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 204(C), pages 1333-1346.
    18. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    19. Sichilalu, Sam & Mathaba, Tebello & Xia, Xiaohua, 2017. "Optimal control of a wind–PV-hybrid powered heat pump water heater," Applied Energy, Elsevier, vol. 185(P2), pages 1173-1184.
    20. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:87:y:2016:i:p3:p:1053-1058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.