IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v317y2025ics0360544225002695.html
   My bibliography  Save this article

Experimental investigation on efficient heating method of solar composite heat pump based on evaporative thermal accumulator

Author

Listed:
  • Gao, Jinshuang
  • Zhao, Yazhou
  • Wu, Fan
  • Adnouni, M.
  • Sun, Yinze
  • Li, Sheng
  • Yu, Zitao
  • Zhang, Xuejun

Abstract

Utilisation of combined solar energy and heat pump systems for heating has the potential to result in a notable reduction of carbon emissions. Nevertheless, the intermittent nature of solar energy and the low-temperature limitations of heat pumps still pose challenges. In order to address this issue, this paper combined the two aforementioned technologies and integrated direct phase-change thermal storage. A solar composite heat pump system with an evaporative thermal accumulator is put forth, with the objective of enhancing heating efficiency. An experimental setup was employed to examine the dynamic performance of the evaporative thermal accumulator under diverse solar thermal-electric conditions and evaluate the influence of two heat transfer media. The experimental results demonstrated that utilisation of phase change slurry as the heat transfer medium led to an enhancement in the power generation efficiency of the PV/T system, with an increase of 2.71 % compared to water-based systems. and also proved to be effective in enhancing the stability of the PV/T system. Additionally, the heat pump and composite system achieved average COPs of 4.74 and 8.23, respectively, representing a substantial 57.36 % increase compared to water-based systems. These findings demonstrate the feasibility and promising potential of using phase change slurry in solar composite heat pump systems.

Suggested Citation

  • Gao, Jinshuang & Zhao, Yazhou & Wu, Fan & Adnouni, M. & Sun, Yinze & Li, Sheng & Yu, Zitao & Zhang, Xuejun, 2025. "Experimental investigation on efficient heating method of solar composite heat pump based on evaporative thermal accumulator," Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225002695
    DOI: 10.1016/j.energy.2025.134627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225002695
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Liu & Niu, Jianlei & Wu, Jian-Yong, 2023. "Improving energy efficiency of photovoltaic/thermal systems by cooling with PCM nano-emulsions: An indoor experimental study," Renewable Energy, Elsevier, vol. 203(C), pages 568-582.
    2. PraveenKumar, Seepana & Agyekum, Ephraim Bonah & Kumar, Abhinav & Velkin, Vladimir Ivanovich, 2023. "Performance evaluation with low-cost aluminum reflectors and phase change material integrated to solar PV modules using natural air convection: An experimental investigation," Energy, Elsevier, vol. 266(C).
    3. Yuan, Weiqi & Ji, Jie & Modjinou, Mawufemo & Zhou, Fan & Li, Zhaomeng & Song, Zhiying & Huang, Shengjuan & Zhao, Xudong, 2018. "Numerical simulation and experimental validation of the solar photovoltaic/thermal system with phase change material," Applied Energy, Elsevier, vol. 232(C), pages 715-727.
    4. Chen, J.F. & Dai, Y.J. & Wang, R.Z., 2016. "Experimental and theoretical study on a solar assisted CO2 heat pump for space heating," Renewable Energy, Elsevier, vol. 89(C), pages 295-304.
    5. Tyagi, V.V. & Kaushik, S.C. & Tyagi, S.K., 2012. "Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1383-1398.
    6. Zhao, M. & Gu, Z.L. & Kang, W.B. & Liu, X. & Zhang, L.Y. & Jin, L.W. & Zhang, Q.L., 2017. "Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source," Applied Energy, Elsevier, vol. 185(P2), pages 2094-2105.
    7. Liang, Haobin & Liu, Liu & Zhong, Ziwen & Gan, Yixiang & Wu, Jian-Yong & Niu, Jianlei, 2022. "Towards idealized thermal stratification in a novel phase change emulsion storage tank," Applied Energy, Elsevier, vol. 310(C).
    8. Qiu, Zhongzhu & Zhao, Xudong & Li, Peng & Zhang, Xingxing & Ali, Samira & Tan, Junyi, 2015. "Theoretical investigation of the energy performance of a novel MPCM (Microencapsulated Phase Change Material) slurry based PV/T module," Energy, Elsevier, vol. 87(C), pages 686-698.
    9. Xingchi Shen & Pengfei Liu & Yueming (Lucy) Qiu & Anand Patwardhan & Parth Vaishnav, 2021. "Estimation of change in house sales prices in the United States after heat pump adoption," Nature Energy, Nature, vol. 6(1), pages 30-37, January.
    10. Li, Tao & Yu, Junyong & Peng, Xinyu & Zhou, Wenjie & Xu, Chenliang & Li, Guannan & Mao, Qianjun, 2025. "Comparison of the thermoelectric performance of different photovoltaic/thermal hybrid thermoelectric generation modules: An experimental study," Applied Energy, Elsevier, vol. 378(PA).
    11. Jin, Xin & Zhang, Huihui & Huang, Gongsheng & Lai, Alvin CK., 2021. "Experimental investigation on the dynamic thermal performance of the parallel solar-assisted air-source heat pump latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 180(C), pages 637-657.
    12. Li, Jinping & Sun, Xiaohua & Zhu, Junjie & Karkon, Ehsan Gholamian & Novakovic, Vojislav, 2024. "Performance comparison of air source heat pump coupling with solar evacuated tube water heater and that with micro heat pipe PV/T," Energy, Elsevier, vol. 300(C).
    13. Shao, Nina & Ma, Liangdong & Zhang, Jili, 2020. "Experimental investigation on the performance of direct-expansion roof-PV/T heat pump system," Energy, Elsevier, vol. 195(C).
    14. Zou, Lingeng & Liu, Ye & Yu, Mengqi & Yu, Jianlin, 2023. "A review of solar assisted heat pump technology for drying applications," Energy, Elsevier, vol. 283(C).
    15. Spale, Jan & Hoess, Andreas J. & Bell, Ian H. & Ziviani, Davide, 2024. "Exploratory study on low-GWP working fluid mixtures for industrial high temperature heat pump with 200 °C supply temperature," Energy, Elsevier, vol. 308(C).
    16. Zhang, Feng & Cai, Jingyong & Ji, Jie & Han, Kedong & Ke, Wei, 2020. "Experimental investigation on the heating and cooling performance of a solar air composite heat source heat pump," Renewable Energy, Elsevier, vol. 161(C), pages 221-229.
    17. Diaconu, Bogdan M. & Varga, Szabolcs & Oliveira, Armando C., 2010. "Experimental assessment of heat storage properties and heat transfer characteristics of a phase change material slurry for air conditioning applications," Applied Energy, Elsevier, vol. 87(2), pages 620-628, February.
    18. Liu, Yang & Zhang, Heng & Chen, Haiping, 2020. "Experimental study of an indirect-expansion heat pump system based on solar low-concentrating photovoltaic/thermal collectors," Renewable Energy, Elsevier, vol. 157(C), pages 718-730.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaolin Lin & Zhenyan Bu & Wei Yang & Melissa Chan & Lin Tian & Mingqi Dai, 2025. "Energy and Exergy Analysis of a Photovoltaic-Thermal Geothermal Heat Pump Coupled with Radiant Ceiling and Fresh Air System," Energies, MDPI, vol. 18(11), pages 1-29, May.
    2. Li, Sheng & Cui, Liping & Zhang, Xuejun & Dai, Zhengshu & Zhang, Changxing & Gao, Jinshuang & Zhao, Yazhou, 2025. "Simulation and experimental study on the performance of solar phase change slurry direct evaporation photovoltaic/thermal heat pump," Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Sheng & Cui, Liping & Zhang, Xuejun & Dai, Zhengshu & Zhang, Changxing & Gao, Jinshuang & Zhao, Yazhou, 2025. "Simulation and experimental study on the performance of solar phase change slurry direct evaporation photovoltaic/thermal heat pump," Energy, Elsevier, vol. 324(C).
    2. Ke, Wei & Ji, Jie & Xu, Lijie & Yu, Bendong & Tian, Xinyi & Wang, Jun, 2021. "Numerical study and experimental validation of a multi-functional dual-air-channel solar wall system with PCM," Energy, Elsevier, vol. 227(C).
    3. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    4. Chen, J.F. & Zhang, L. & Dai, Y.J., 2018. "Performance analysis and multi-objective optimization of a hybrid photovoltaic/thermal collector for domestic hot water application," Energy, Elsevier, vol. 143(C), pages 500-516.
    5. Zhao, Yang & Wang, Feng & Xu, Zipeng & Cheng, Chao & Gao, Dan & Zhang, Heng & Wang, Yuting, 2025. "Experimental and numerical investigation of spray cooling based photovoltaic/thermal system: Achieving high performance, low cost, and lightweight design," Energy, Elsevier, vol. 323(C).
    6. Han, Youhua & Liu, Yang & Lu, Shixiang & Basalike, Pie & Zhang, Jili, 2021. "Electrical performance and power prediction of a roll-bond photovoltaic thermal array under dewing and frosting conditions," Energy, Elsevier, vol. 237(C).
    7. Jia, Teng & Dai, Yanjun & Wang, Ruzhu, 2018. "Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 278-296.
    8. B, Prabhu & A, Valan Arasu & P, Gurusamy & A, Amala Mithin Minther Singh & T, Arunkumar, 2024. "Solar photovoltaic cooling using Paraffin phase change material: Comprehensive assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    9. Zhang, Shaoliang & Liu, Shuli & Shen, Yongliang & Shukla, Ashish & Mazhar, Abdur Rehman & Chen, Tingsen, 2024. "Critical review of solar-assisted air source heat pump in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    10. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Comparative study on dual-source direct-expansion heat pumps based on different composite concentrating photovoltaic/fin evaporators," Applied Energy, Elsevier, vol. 306(PB).
    12. Liu, Zhenghao & Zhang, Heng & Cheng, Chao & Huang, Jiguang, 2021. "Energetic performance analysis on a membrane distillation integrated with low concentrating PV/T hybrid system," Renewable Energy, Elsevier, vol. 179(C), pages 1815-1825.
    13. Song, Zhiying & Zhang, Yuzhe & Ji, Jie & He, Wei & Hu, Zhongting & Xuan, Qingdong, 2024. "Yearly photoelectric/thermal and economic performance comparison between CPV and FPV dual-source heat pump systems in different regions," Energy, Elsevier, vol. 289(C).
    14. Li, Rui & Jia, Zijiao & Sun, Xiaohua & Li, Jinping & Zhai, Panpan & Novakovic, Vojislav, 2025. "Performance analysis of different flow rates and dust accumulation in micro heat pipe PV/T series system," Renewable Energy, Elsevier, vol. 241(C).
    15. Wen, Xin & Ji, Jie & Song, Zhiying, 2021. "Performance comparison of two micro-channel heat pipe LFPV/T systems plus thermoelectric generators with and without aerogel glazing," Energy, Elsevier, vol. 229(C).
    16. Asier Sanz & Antonio J. Martín & Ainhoa Pereda & Eduardo Román & Pedro Ibañez & Raquel Fuente, 2022. "A Solar Dually PVT Driven Direct Expansion Heat Pump One-Year Field Operation Results at Continental Climate," Energies, MDPI, vol. 15(9), pages 1-23, April.
    17. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    18. Yao, Jian & Dou, Pengbo & Zheng, Sihang & Zhao, Yao & Dai, Yanjun & Zhu, Junjie & Novakovic, Vojislav, 2022. "Co-generation ability investigation of the novel structured PVT heat pump system and its effect on the “Carbon neutral” strategy of Shanghai," Energy, Elsevier, vol. 239(PA).
    19. Shao, Nina & Ma, Liangdong & Zhang, Jili, 2020. "Experimental investigation on the performance of direct-expansion roof-PV/T heat pump system," Energy, Elsevier, vol. 195(C).
    20. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225002695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.