IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v115y2016ip3p1513-1532.html
   My bibliography  Save this article

Evaluation of the potential of natural gas district heating cogeneration in Spain as a tool for decarbonisation of the economy

Author

Listed:
  • Soltero, V.M.
  • Chacartegui, R.
  • Ortiz, C.
  • Velázquez, R.

Abstract

High efficiency heating/cooling networks have a main role in economy decarbonisation. Evaluation of the potential for cogeneration district heating systems at regional level requires environmental, economic and regulatory analyses at different levels. This paper defines a top-down/bottom-up methodology for the analysis of potential cogeneration district heating systems at regional level as tool for supporting energy policies. It is based on the analysis at four levels for the regulatory framework, resources, infrastructures and demands: national, regional, municipality and district. As case study the methodology is applied to the analysis of cogeneration heating networks in the Spanish continental area. For the case study, cogeneration heating networks of small power (5MWe) were shown as the most interesting option with heat supply capacity for 1300–1400 houses. The application of the methodology to this region shows a potential for 589 new fully viable cogeneration district heating systems. It implies the installation of 3000 MW of high efficiency distributed power. For each single module annual savings above 0.5 Million euros are expected with market prices for gas and electricity. Results show the opportunity for an annual CO2 emissions savings above 4 Million of CO2 tons and a business generation above 3000 Million of euros.

Suggested Citation

  • Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2016. "Evaluation of the potential of natural gas district heating cogeneration in Spain as a tool for decarbonisation of the economy," Energy, Elsevier, vol. 115(P3), pages 1513-1532.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p3:p:1513-1532
    DOI: 10.1016/j.energy.2016.06.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421630812X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Mingxi & Shi, Yang & Fang, Fang, 2014. "Combined cooling, heating and power systems: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 1-22.
    2. Köfinger, M. & Basciotti, D. & Schmidt, R.R. & Meissner, E. & Doczekal, C. & Giovannini, A., 2016. "Low temperature district heating in Austria: Energetic, ecologic and economic comparison of four case studies," Energy, Elsevier, vol. 110(C), pages 95-104.
    3. Čulig-Tokić, Dario & Krajačić, Goran & Doračić, Borna & Mathiesen, Brian Vad & Krklec, Robert & Larsen, Jesper Møller, 2015. "Comparative analysis of the district heating systems of two towns in Croatia and Denmark," Energy, Elsevier, vol. 92(P3), pages 435-443.
    4. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    5. Huculak, Maciej & Jarczewski, Wojciech & Dej, Magdalena, 2015. "Economic aspects of the use of deep geothermal heat in district heating in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 29-40.
    6. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    7. Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2016. "Lowering district heating temperatures – Impact to system performance in current and future Danish energy scenarios," Energy, Elsevier, vol. 94(C), pages 273-291.
    8. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Mur-Pérez, Francisco, 2015. "Cogeneration and district heating networks: Measures to remove institutional and financial barriers that restrict their joint use in the EU-28," Energy, Elsevier, vol. 85(C), pages 403-414.
    9. Li, Yan & Fu, Lin & Zhang, Shuyan, 2015. "Technology application of district heating system with Co-generation based on absorption heat exchange," Energy, Elsevier, vol. 90(P1), pages 663-670.
    10. Åberg, M. & Widén, J. & Henning, D., 2012. "Sensitivity of district heating system operation to heat demand reductions and electricity price variations: A Swedish example," Energy, Elsevier, vol. 41(1), pages 525-540.
    11. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    12. Reidhav, Charlotte & Werner, Sven, 2008. "Profitability of sparse district heating," Applied Energy, Elsevier, vol. 85(9), pages 867-877, September.
    13. Lozano, Miguel A. & Ramos, Jose C. & Serra, Luis M., 2010. "Cost optimization of the design of CHCP (combined heat, cooling and power) systems under legal constraints," Energy, Elsevier, vol. 35(2), pages 794-805.
    14. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    15. Klaassen, R.E. & Patel, M.K., 2013. "District heating in the Netherlands today: A techno-economic assessment for NGCC-CHP (Natural Gas Combined Cycle combined heat and power)," Energy, Elsevier, vol. 54(C), pages 63-73.
    16. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    17. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    18. Cvetinović, Dejan & Stefanović, Predrag & Marković, Zoran & Bakić, Vukman & Turanjanin, Valentina & Jovanović, Marina & Vučićević, Biljana, 2013. "GHG (Greenhouse Gases) emission inventory and mitigation measures for public district heating plants in the Republic of Serbia," Energy, Elsevier, vol. 57(C), pages 788-795.
    19. Nilsson, Stefan Forsaeus & Reidhav, Charlotte & Lygnerud, Kristina & Werner, Sven, 2008. "Sparse district-heating in Sweden," Applied Energy, Elsevier, vol. 85(7), pages 555-564, July.
    20. Buoro, Dario & Pinamonti, Piero & Reini, Mauro, 2014. "Optimization of a Distributed Cogeneration System with solar district heating," Applied Energy, Elsevier, vol. 124(C), pages 298-308.
    21. Liao, Chunhui & Ertesvåg, Ivar S. & Zhao, Jianing, 2013. "Energetic and exergetic efficiencies of coal-fired CHP (combined heat and power) plants used in district heating systems of China," Energy, Elsevier, vol. 57(C), pages 671-681.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Espirito Santo, Denilson Boschiero do & Gallo, Waldyr Luiz Ribeiro, 2017. "Utilizing primary energy savings and exergy destruction to compare centralized thermal plants and cogeneration/trigeneration systems," Energy, Elsevier, vol. 120(C), pages 785-795.
    2. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    3. Lizana, Jesús & Ortiz, Carlos & Soltero, Víctor M. & Chacartegui, Ricardo, 2017. "District heating systems based on low-carbon energy technologies in Mediterranean areas," Energy, Elsevier, vol. 120(C), pages 397-416.
    4. Borge-Diez, David & Icaza, Daniel & Trujillo-Cueva, Diego Francisco & Açıkkalp, Emin, 2022. "Renewable energy driven heat pumps decarbonization potential in existing residential buildings: Roadmap and case study of Spain," Energy, Elsevier, vol. 247(C).
    5. Dorotić, Hrvoje & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2021. "Evaluation of district heating with regard to individual systems – Importance of carbon and cost allocation in cogeneration units," Energy, Elsevier, vol. 221(C).
    6. Picardo, Alberto & Soltero, Victor M. & Peralta, M. Estela & Chacartegui, Ricardo, 2019. "District heating based on biogas from wastewater treatment plant," Energy, Elsevier, vol. 180(C), pages 649-664.
    7. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Connolly, David, 2018. "Heat Roadmap Europe: Identifying local heat demand and supply areas with a European thermal atlas," Energy, Elsevier, vol. 158(C), pages 281-292.
    8. Soltero, Víctor M. & Quirosa, Gonzalo & Rodríguez, Diego & Peralta, M. Estela & Ortiz, Carlos & Chacartegui, Ricardo, 2023. "A profitability index for rural biomass district heating systems evaluation," Energy, Elsevier, vol. 282(C).
    9. Víctor M. Soltero & Ricardo Chacartegui & Carlos Ortiz & Gonzalo Quirosa, 2018. "Techno-Economic Analysis of Rural 4th Generation Biomass District Heating," Energies, MDPI, vol. 11(12), pages 1-20, November.
    10. Cristina Sáez Blázquez & Arturo Farfán Martín & Ignacio Martín Nieto & Diego González-Aguilera, 2018. "Economic and Environmental Analysis of Different District Heating Systems Aided by Geothermal Energy," Energies, MDPI, vol. 11(5), pages 1-17, May.
    11. Andersen, Anders N. & Østergaard, Poul Alberg, 2020. "Support schemes adapting district energy combined heat and power for the role as a flexibility provider in renewable energy systems," Energy, Elsevier, vol. 192(C).
    12. Malinauskaite, Jurgita & Jouhara, Hussam & Egilegor, Bakartxo & Al-Mansour, Fouad & Ahmad, Lujean & Pusnik, Matevz, 2020. "Energy efficiency in the industrial sector in the EU, Slovenia, and Spain," Energy, Elsevier, vol. 208(C).
    13. Kılkış, Birol & Kılkış, Şiir, 2017. "New exergy metrics for energy, environment, and economy nexus and optimum design model for nearly-zero exergy airport (nZEXAP) systems," Energy, Elsevier, vol. 140(P2), pages 1329-1349.
    14. Pavičević, Matija & Novosel, Tomislav & Pukšec, Tomislav & Duić, Neven, 2017. "Hourly optimization and sizing of district heating systems considering building refurbishment – Case study for the city of Zagreb," Energy, Elsevier, vol. 137(C), pages 1264-1276.
    15. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Guzović, Zvonimir & Duic, Neven & Piacentino, Antonio & Markovska, Natasa & Mathiesen, Brian Vad & Lund, Henrik, 2022. "Recent advances in methods, policies and technologies at sustainable energy systems development," Energy, Elsevier, vol. 245(C).
    17. Fesefeldt, M. & Capezzali, M. & Bozorg, M. & de Lapparent, M., 2021. "Evaluation of future scenarios for gas distribution networks under hypothesis of decreasing heat demand in urban zones," Energy, Elsevier, vol. 231(C).
    18. Neumayer, Martin & Stecher, Dominik & Grimm, Sebastian & Maier, Andreas & Bücker, Dominikus & Schmidt, Jochen, 2023. "Fault and anomaly detection in district heating substations: A survey on methodology and data sets," Energy, Elsevier, vol. 276(C).
    19. Jalil-Vega, F. & Hawkes, A.D., 2018. "Spatially resolved model for studying decarbonisation pathways for heat supply and infrastructure trade-offs," Applied Energy, Elsevier, vol. 210(C), pages 1051-1072.
    20. Hast, Aira & Syri, Sanna & Lekavičius, Vidas & Galinis, Arvydas, 2018. "District heating in cities as a part of low-carbon energy system," Energy, Elsevier, vol. 152(C), pages 627-639.
    21. Soltero, V.M. & Quirosa, Gonzalo & Peralta, M.E. & Chacartegui, Ricardo & Torres, Miguel, 2022. "A biomass universal district heating model for sustainability evaluation for geographical areas with early experience," Energy, Elsevier, vol. 242(C).
    22. Markovska, Natasa & Duić, Neven & Mathiesen, Brian Vad & Guzović, Zvonimir & Piacentino, Antonio & Schlör, Holger & Lund, Henrik, 2016. "Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems," Energy, Elsevier, vol. 115(P3), pages 1504-1512.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    2. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    3. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    4. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    5. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    6. Picardo, Alberto & Soltero, Victor M. & Peralta, M. Estela & Chacartegui, Ricardo, 2019. "District heating based on biogas from wastewater treatment plant," Energy, Elsevier, vol. 180(C), pages 649-664.
    7. Lizana, Jesús & Ortiz, Carlos & Soltero, Víctor M. & Chacartegui, Ricardo, 2017. "District heating systems based on low-carbon energy technologies in Mediterranean areas," Energy, Elsevier, vol. 120(C), pages 397-416.
    8. Borna Doračić & Tomislav Novosel & Tomislav Pukšec & Neven Duić, 2018. "Evaluation of Excess Heat Utilization in District Heating Systems by Implementing Levelized Cost of Excess Heat," Energies, MDPI, vol. 11(3), pages 1-14, March.
    9. Levihn, Fabian, 2017. "CHP and heat pumps to balance renewable power production: Lessons from the district heating network in Stockholm," Energy, Elsevier, vol. 137(C), pages 670-678.
    10. Welsch, Bastian & Göllner-Völker, Laura & Schulte, Daniel O. & Bär, Kristian & Sass, Ingo & Schebek, Liselotte, 2018. "Environmental and economic assessment of borehole thermal energy storage in district heating systems," Applied Energy, Elsevier, vol. 216(C), pages 73-90.
    11. Moa Swing Gustafsson & Jonn Are Myhren & Erik Dotzauer, 2018. "Life Cycle Cost of Heat Supply to Areas with Detached Houses—A Comparison of District Heating and Heat Pumps from an Energy System Perspective," Energies, MDPI, vol. 11(12), pages 1-17, November.
    12. Persson, U. & Möller, B. & Werner, S., 2014. "Heat Roadmap Europe: Identifying strategic heat synergy regions," Energy Policy, Elsevier, vol. 74(C), pages 663-681.
    13. Doračić, Borna & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2020. "The effect of different parameters of the excess heat source on the levelized cost of excess heat," Energy, Elsevier, vol. 201(C).
    14. Østergaard, Poul Alberg & Andersen, Anders N., 2018. "Economic feasibility of booster heat pumps in heat pump-based district heating systems," Energy, Elsevier, vol. 155(C), pages 921-929.
    15. Meesenburg, Wiebke & Ommen, Torben & Thorsen, Jan Eric & Elmegaard, Brian, 2020. "Economic feasibility of ultra-low temperature district heating systems in newly built areas supplied by renewable energy," Energy, Elsevier, vol. 191(C).
    16. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    17. Im, Yong-Hoon & Liu, Jie, 2018. "Feasibility study on the low temperature district heating and cooling system with bi-lateral heat trades model," Energy, Elsevier, vol. 153(C), pages 988-999.
    18. Ommen, Torben & Thorsen, Jan Eric & Markussen, Wiebke Brix & Elmegaard, Brian, 2017. "Performance of ultra low temperature district heating systems with utility plant and booster heat pumps," Energy, Elsevier, vol. 137(C), pages 544-555.
    19. Gebremedhin, Alemayehu, 2012. "Introducing District Heating in a Norwegian town – Potential for reduced Local and Global Emissions," Applied Energy, Elsevier, vol. 95(C), pages 300-304.
    20. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p3:p:1513-1532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.