IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v93y2012icp2-10.html
   My bibliography  Save this article

District heating and cooling: Review of technology and potential enhancements

Author

Listed:
  • Rezaie, Behnaz
  • Rosen, Marc A.

Abstract

District energy systems are reviewed and possible future enhancements involving expanded thermal networks are considered. Various definitions, classifications and applications of district cooling and heating are discussed and elements of a district energy system are described. Also, the integration of combined heat and power (CHP) with district energy, permitting the cogeneration of electricity and heat, is examined from several points of view and for various locations and applications. One of the main advantages of district heating and cooling systems is their environmental benefits, which are explained in detail. The economics of a thermal network system, as a major factor in the justification for any project, is elaborated upon from industrial, governmental and societal perspectives. Furthermore, related regulations at government levels are suggested based on various investigations. The efficiency of district energy is discussed and exergy analysis, as an effective method for calculating the efficiency of a thermal network, is explained. Finally, other advantages of the district energy technology for communities are pointed out. This review of district heating and cooling considers technical, economic and environmental aspects and helps identify possibilities for future study on district energy systems.

Suggested Citation

  • Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
  • Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:2-10
    DOI: 10.1016/j.apenergy.2011.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191100242X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Munksgaard, Jesper & Pade, Lise-Lotte & Fristrup, Peter, 2005. "Efficiency gains in Danish district heating. Is there anything to learn from benchmarking?," Energy Policy, Elsevier, vol. 33(15), pages 1986-1997, October.
    2. Genchi, Yutaka & Kikegawa, Yukihiro & Inaba, Atsushi, 2002. "CO2 payback-time assessment of a regional-scale heating and cooling system using a ground source heat-pump in a high energy-consumption area in Tokyo," Applied Energy, Elsevier, vol. 71(3), pages 147-160, March.
    3. Fumo, Nelson & Mago, Pedro J. & Chamra, Louay M., 2009. "Emission operational strategy for combined cooling, heating, and power systems," Applied Energy, Elsevier, vol. 86(11), pages 2344-2350, November.
    4. Gustafsson, Jonas & Delsing, Jerker & van Deventer, Jan, 2010. "Improved district heating substation efficiency with a new control strategy," Applied Energy, Elsevier, vol. 87(6), pages 1996-2004, June.
    5. Sjöström, Magnus, 2004. "Biofuels and Market Power - The Case of Swedish District Heating Plants," Umeå Economic Studies 634, Umeå University, Department of Economics.
    6. Reidhav, Charlotte & Werner, Sven, 2008. "Profitability of sparse district heating," Applied Energy, Elsevier, vol. 85(9), pages 867-877, September.
    7. Agrell, Per J. & Bogetoft, Peter, 2005. "Economic and environmental efficiency of district heating plants," Energy Policy, Elsevier, vol. 33(10), pages 1351-1362, July.
    8. Chinese, Damiana & Meneghetti, Antonella & Nardin, Gioacchino, 2005. "Waste-to-energy based greenhouse heating: exploring viability conditions through optimisation models," Renewable Energy, Elsevier, vol. 30(10), pages 1573-1586.
    9. Eriksson, Marcus & Vamling, Lennart, 2007. "Future use of heat pumps in Swedish district heating systems: Short- and long-term impact of policy instruments and planned investments," Applied Energy, Elsevier, vol. 84(12), pages 1240-1257, December.
    10. Lunghi, P. & Burzacca, R., 2004. "Energy recovery from industrial waste of a confectionery plant by means of BIGFC plant," Energy, Elsevier, vol. 29(12), pages 2601-2617.
    11. Holmgren, Kristina & Amiri, Shahnaz, 2007. "Internalising external costs of electricity and heat production in a municipal energy system," Energy Policy, Elsevier, vol. 35(10), pages 5242-5253, October.
    12. Trygg, Louise & Gebremedhin, Alemayehu & Karlsson, Björn G., 2006. "Resource-effective systems achieved through changes in energy supply and industrial use: The Volvo-Skövde case," Applied Energy, Elsevier, vol. 83(8), pages 801-818, August.
    13. Zhai, H. & Dai, Y.J. & Wu, J.Y. & Wang, R.Z., 2009. "Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas," Applied Energy, Elsevier, vol. 86(9), pages 1395-1404, September.
    14. Difs, Kristina & Danestig, Maria & Trygg, Louise, 2009. "Increased use of district heating in industrial processes - Impacts on heat load duration," Applied Energy, Elsevier, vol. 86(11), pages 2327-2334, November.
    15. Dincer, Ibrahim, 2002. "The role of exergy in energy policy making," Energy Policy, Elsevier, vol. 30(2), pages 137-149, January.
    16. Nilsson, Stefan Forsaeus & Reidhav, Charlotte & Lygnerud, Kristina & Werner, Sven, 2008. "Sparse district-heating in Sweden," Applied Energy, Elsevier, vol. 85(7), pages 555-564, July.
    17. Fumo, Nelson & Chamra, Louay M., 2010. "Analysis of combined cooling, heating, and power systems based on source primary energy consumption," Applied Energy, Elsevier, vol. 87(6), pages 2023-2030, June.
    18. Amiri, S. & Moshfegh, B., 2010. "Possibilities and consequences of deregulation of the European electricity market for connection of heat sparse areas to district heating systems," Applied Energy, Elsevier, vol. 87(7), pages 2401-2410, July.
    19. Persson, Urban & Werner, Sven, 2011. "Heat distribution and the future competitiveness of district heating," Applied Energy, Elsevier, vol. 88(3), pages 568-576, March.
    20. Holmgren, Kristina, 2006. "Role of a district-heating network as a user of waste-heat supply from various sources - the case of Göteborg," Applied Energy, Elsevier, vol. 83(12), pages 1351-1367, December.
    21. Pavlas, Martin & Stehlík, Petr & Oral, Jaroslav & Šikula, Jiří, 2006. "Integrating renewable sources of energy into an existing combined heat and power system," Energy, Elsevier, vol. 31(13), pages 2499-2511.
    22. Knutsson, David & Sahlin, Jenny & Werner, Sven & Ekvall, Tomas & Ahlgren, Erik O., 2006. "HEATSPOT—a simulation tool for national district heating analyses," Energy, Elsevier, vol. 31(2), pages 278-293.
    23. Eriksson, Ola & Finnveden, Goran & Ekvall, Tomas & Bjorklund, Anna, 2007. "Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion," Energy Policy, Elsevier, vol. 35(2), pages 1346-1362, February.
    24. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:2-10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.