IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223017899.html
   My bibliography  Save this article

A profitability index for rural biomass district heating systems evaluation

Author

Listed:
  • Soltero, Víctor M.
  • Quirosa, Gonzalo
  • Rodríguez, Diego
  • Peralta, M. Estela
  • Ortiz, Carlos
  • Chacartegui, Ricardo

Abstract

Biomass heating networks are an efficient and low-emission alternative for rural municipalities without natural gas supply. One of the main challenges for their implementation on a larger scale is to reduce the uncertainty in the profitability evaluation. The linear heat density is the index commonly used to evaluate the potential for heating networks investments. It provides highly accurate estimations in high-density building networks. However, it does not provide accurate enough evaluations for low-building-density networks, resulting in relevant deviations when applied to biomass district heating networks. This work proposes a new index to evaluate the profitability of biomass heating networks in rural environments based on the analysis of investment, operation, and biomass costs. It is developed based on the cost-benefit analysis of biomass heating networks. The new index has been applied to 499 rural municipalities in Spain, showing a high accuracy in estimating the profitability of investments, with R2 values between 0.8179 and 0.9442, compared to 0.2408 if linear heat density was used for the same cases. The analyses show the interest of this approach for the evaluation of biomass district heating potential in areas with dispersed populations.

Suggested Citation

  • Soltero, Víctor M. & Quirosa, Gonzalo & Rodríguez, Diego & Peralta, M. Estela & Ortiz, Carlos & Chacartegui, Ricardo, 2023. "A profitability index for rural biomass district heating systems evaluation," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017899
    DOI: 10.1016/j.energy.2023.128395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223017899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dalla Rosa, A. & Christensen, J.E., 2011. "Low-energy district heating in energy-efficient building areas," Energy, Elsevier, vol. 36(12), pages 6890-6899.
    2. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2016. "Evaluation of the potential of natural gas district heating cogeneration in Spain as a tool for decarbonisation of the economy," Energy, Elsevier, vol. 115(P3), pages 1513-1532.
    3. Persson, Urban & Werner, Sven, 2011. "Heat distribution and the future competitiveness of district heating," Applied Energy, Elsevier, vol. 88(3), pages 568-576, March.
    4. Hansen, C.H. & Gudmundsson, O. & Detlefsen, N., 2019. "Cost efficiency of district heating for low energy buildings of the future," Energy, Elsevier, vol. 177(C), pages 77-86.
    5. Badami, Marco & Gerboni, Raffaella & Portoraro, Armando, 2017. "Determination and assessment of indices for the energy performance of district heating with cogeneration plants," Energy, Elsevier, vol. 127(C), pages 697-703.
    6. Soltero, V.M. & Quirosa, Gonzalo & Peralta, M.E. & Chacartegui, Ricardo & Torres, Miguel, 2022. "A biomass universal district heating model for sustainability evaluation for geographical areas with early experience," Energy, Elsevier, vol. 242(C).
    7. Beccali, M. & Ciulla, G. & Di Pietra, B. & Galatioto, A. & Leone, G. & Piacentino, A., 2017. "Assessing the feasibility of cogeneration retrofit and district heating/cooling networks in small Italian islands," Energy, Elsevier, vol. 141(C), pages 2572-2586.
    8. Reidhav, Charlotte & Werner, Sven, 2008. "Profitability of sparse district heating," Applied Energy, Elsevier, vol. 85(9), pages 867-877, September.
    9. Stennikov, Valery A. & Iakimetc, Ekaterina E., 2016. "Optimal planning of heat supply systems in urban areas," Energy, Elsevier, vol. 110(C), pages 157-165.
    10. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2018. "Potential of biomass district heating systems in rural areas," Energy, Elsevier, vol. 156(C), pages 132-143.
    11. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Lund, Rasmus Søgaard & Mathiesen, Brian Vad, 2019. "Heat Roadmap Europe: Towards EU-Wide, local heat supply strategies," Energy, Elsevier, vol. 177(C), pages 554-564.
    12. Víctor M. Soltero & Ricardo Chacartegui & Carlos Ortiz & Gonzalo Quirosa, 2018. "Techno-Economic Analysis of Rural 4th Generation Biomass District Heating," Energies, MDPI, vol. 11(12), pages 1-20, November.
    13. Eriksson, Ola & Finnveden, Goran & Ekvall, Tomas & Bjorklund, Anna, 2007. "Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion," Energy Policy, Elsevier, vol. 35(2), pages 1346-1362, February.
    14. Sánchez-García, Sandra & Canga, Elena & Tolosana, Eduardo & Majada, Juan, 2015. "A spatial analysis of woodfuel based on WISDOM GIS methodology: Multiscale approach in Northern Spain," Applied Energy, Elsevier, vol. 144(C), pages 193-203.
    15. Bartolozzi, Irene & Rizzi, Francesco & Frey, Marco, 2017. "Are district heating systems and renewable energy sources always an environmental win-win solution? A life cycle assessment case study in Tuscany, Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 408-420.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lizana, Jesús & Ortiz, Carlos & Soltero, Víctor M. & Chacartegui, Ricardo, 2017. "District heating systems based on low-carbon energy technologies in Mediterranean areas," Energy, Elsevier, vol. 120(C), pages 397-416.
    2. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    4. Picardo, Alberto & Soltero, Victor M. & Peralta, M. Estela & Chacartegui, Ricardo, 2019. "District heating based on biogas from wastewater treatment plant," Energy, Elsevier, vol. 180(C), pages 649-664.
    5. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    6. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
    7. Averfalk, Helge & Werner, Sven, 2020. "Economic benefits of fourth generation district heating," Energy, Elsevier, vol. 193(C).
    8. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    9. Leurent, Martin & Da Costa, Pascal & Rämä, Miika & Persson, Urban & Jasserand, Frédéric, 2018. "Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European countries," Energy, Elsevier, vol. 149(C), pages 454-472.
    10. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    11. Nuytten, Thomas & Claessens, Bert & Paredis, Kristof & Van Bael, Johan & Six, Daan, 2013. "Flexibility of a combined heat and power system with thermal energy storage for district heating," Applied Energy, Elsevier, vol. 104(C), pages 583-591.
    12. Bachmann, Max & Kriegel, Martin, 2023. "Assessing the heat distribution costs of linear and radial district heating networks: A methodological approach," Energy, Elsevier, vol. 276(C).
    13. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    14. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
    15. Pratiwi, Astu Sam & Trutnevyte, Evelina, 2022. "Decision paths to reduce costs and increase economic impact of geothermal district heating in Geneva, Switzerland," Applied Energy, Elsevier, vol. 322(C).
    16. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    17. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    18. Leurent, Martin, 2019. "Analysis of the district heating potential in French regions using a geographic information system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Persson, U. & Möller, B. & Werner, S., 2014. "Heat Roadmap Europe: Identifying strategic heat synergy regions," Energy Policy, Elsevier, vol. 74(C), pages 663-681.
    20. Sánchez-García, Luis & Averfalk, Helge & Möllerström, Erik & Persson, Urban, 2023. "Understanding effective width for district heating," Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.