IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v30y2005i7p1013-1078.html
   My bibliography  Save this article

Humidified gas turbines—a review of proposed and implemented cycles

Author

Listed:
  • Jonsson, Maria
  • Yan, Jinyue

Abstract

Gas turbines with air–water mixtures as the working fluid promise high electrical efficiencies and high specific power outputs to specific investment costs below that of combined cycles. Different humidified gas turbine cycles have been proposed, for example direct water-injected cycles, steam-injected cycles and evaporative cycles with humidification towers. However, only a few of these cycles have been implemented and even fewer are available commercially. This paper comprehensively reviews the literature on research and development on humidified gas turbines and identifies the cycles with the largest potential for the future. In addition, the remaining development work required for implementing the various humidified gas turbine cycles is discussed. This paper can also be used as a reference source that summarizes the research and development activities on humidified gas turbines in the last three decades.

Suggested Citation

  • Jonsson, Maria & Yan, Jinyue, 2005. "Humidified gas turbines—a review of proposed and implemented cycles," Energy, Elsevier, vol. 30(7), pages 1013-1078.
  • Handle: RePEc:eee:energy:v:30:y:2005:i:7:p:1013-1078
    DOI: 10.1016/j.energy.2004.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204003573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, T.S & Song, C.H & Ro, S.T & Kauh, S.K, 2000. "Influence of ambient condition on thermodynamic performance of the humid air turbine cycle," Energy, Elsevier, vol. 25(4), pages 313-324.
    2. Gallo, Waldyr Luiz Ribeiro & Bidini, Gianni & Bettagli, Niccola & Facchini, Bruno, 1997. "Effect of turbine-blade cooling on the hat (humid air turbine) cycle," Energy, Elsevier, vol. 22(4), pages 375-380.
    3. Szargut, J., 2002. "Cogeneration of network heat in the set of a humid air turbine," Energy, Elsevier, vol. 27(1), pages 1-15.
    4. Ishida, Masaru & Jin, Hongguang, 1994. "A new advanced power-generation system using chemical-looping combustion," Energy, Elsevier, vol. 19(4), pages 415-422.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Hongbin & Yue, Pengxiu, 2011. "Performance analysis of humid air turbine cycle with solar energy for methanol decomposition," Energy, Elsevier, vol. 36(5), pages 2372-2380.
    2. Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
    3. Zhang, Xiaosong & Han, Wei & Hong, Hui & Jin, Hongguang, 2009. "A chemical intercooling gas turbine cycle with chemical-looping combustion," Energy, Elsevier, vol. 34(12), pages 2131-2136.
    4. Anwar Hamdan Al Assaf & Abdulkarem Amhamed & Odi Fawwaz Alrebei, 2022. "State of the Art in Humidified Gas Turbine Configurations," Energies, MDPI, vol. 15(24), pages 1-32, December.
    5. Fernández, J.R. & Abanades, J.C., 2014. "Conceptual design of a Ni-based chemical looping combustion process using fixed-beds," Applied Energy, Elsevier, vol. 135(C), pages 309-319.
    6. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Medrano, J.A. & Potdar, I. & Melendez, J. & Spallina, V. & Pacheco-Tanaka, D.A. & van Sint Annaland, M. & Gallucci, F., 2018. "The membrane-assisted chemical looping reforming concept for efficient H2 production with inherent CO2 capture: Experimental demonstration and model validation," Applied Energy, Elsevier, vol. 215(C), pages 75-86.
    8. Wang, Jinsheng & Anthony, Edward J., 2008. "Clean combustion of solid fuels," Applied Energy, Elsevier, vol. 85(2-3), pages 73-79, February.
    9. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
    10. Ridha, Firas N. & Duchesne, Marc A. & Lu, Xuao & Lu, Dennis Y. & Filippou, Dimitrios & Hughes, Robin W., 2016. "Characterization of an ilmenite ore for pressurized chemical looping combustion," Applied Energy, Elsevier, vol. 163(C), pages 323-333.
    11. Xiaosong Zhang & Sheng Li & Hongguang Jin, 2014. "A Polygeneration System Based on Multi-Input Chemical Looping Combustion," Energies, MDPI, vol. 7(11), pages 1-12, November.
    12. Xu, Lei & Sun, Hongming & Li, Zhenshan & Cai, Ningsheng, 2016. "Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor," Applied Energy, Elsevier, vol. 162(C), pages 940-947.
    13. Liu, Xiangyu & Hong, Hui & Zhang, Hao & Cao, Yali & Qu, Wanjun & Jin, Hongguang, 2020. "Solar methanol by hybridizing natural gas chemical looping reforming with solar heat," Applied Energy, Elsevier, vol. 277(C).
    14. Wang, Yuzhang & Li, Yixing & Weng, Shilie & Wang, Yonghong, 2007. "Numerical simulation of counter-flow spray saturator for humid air turbine cycle," Energy, Elsevier, vol. 32(5), pages 852-860.
    15. Kumar, Pawan & Kim, Ki-Hyun, 2016. "Recent progress and innovation in carbon capture and storage using bioinspired materials," Applied Energy, Elsevier, vol. 172(C), pages 383-397.
    16. Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
    17. Zhang, Yongliang & Jin, Bo & Zou, Xixian & Zhao, Haibo, 2016. "A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation," Energy, Elsevier, vol. 98(C), pages 181-189.
    18. Zhang, Xiaosong & Jin, Hongguang, 2013. "Thermodynamic analysis of chemical-looping hydrogen generation," Applied Energy, Elsevier, vol. 112(C), pages 800-807.
    19. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    20. Jiménez Álvaro, Ángel & Urdiales Montesino, Álvaro & Sánchez Orgaz, Susana & González Fernández, Celina, 2017. "Thermodynamic analysis of a dual power-hydrogen production system based on chemical-looping combustion," Energy, Elsevier, vol. 137(C), pages 1075-1085.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:30:y:2005:i:7:p:1013-1078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.