Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2015.10.167
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ishida, M. & Zheng, D. & Akehata, T., 1987. "Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis," Energy, Elsevier, vol. 12(2), pages 147-154.
- Rydén, Magnus & Leion, Henrik & Mattisson, Tobias & Lyngfelt, Anders, 2014. "Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling," Applied Energy, Elsevier, vol. 113(C), pages 1924-1932.
- Arjmand, Mehdi & Leion, Henrik & Mattisson, Tobias & Lyngfelt, Anders, 2014. "Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels," Applied Energy, Elsevier, vol. 113(C), pages 1883-1894.
- Lyngfelt, Anders, 2014. "Chemical-looping combustion of solid fuels – Status of development," Applied Energy, Elsevier, vol. 113(C), pages 1869-1873.
- Moldenhauer, Patrick & Rydén, Magnus & Mattisson, Tobias & Younes, Mourad & Lyngfelt, Anders, 2014. "The use of ilmenite as oxygen carrier with kerosene in a 300W CLC laboratory reactor with continuous circulation," Applied Energy, Elsevier, vol. 113(C), pages 1846-1854.
- Ströhle, Jochen & Orth, Matthias & Epple, Bernd, 2014. "Design and operation of a 1MWth chemical looping plant," Applied Energy, Elsevier, vol. 113(C), pages 1490-1495.
- Ishida, Masaru & Jin, Hongguang, 1994. "A new advanced power-generation system using chemical-looping combustion," Energy, Elsevier, vol. 19(4), pages 415-422.
- Schwebel, G.L. & Filippou, D. & Hudon, G. & Tworkowski, M. & Gipperich, A. & Krumm, W., 2014. "Experimental comparison of two different ilmenites in fluidized bed and fixed bed chemical-looping combustion," Applied Energy, Elsevier, vol. 113(C), pages 1902-1908.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tomasz Czakiert & Jaroslaw Krzywanski & Anna Zylka & Wojciech Nowak, 2022. "Chemical Looping Combustion: A Brief Overview," Energies, MDPI, vol. 15(4), pages 1-19, February.
- Adánez-Rubio, Iñaki & Abad, Alberto & Gayán, Pilar & García-Labiano, Francisco & de Diego, Luis F. & Adánez, Juan, 2017. "Coal combustion with a spray granulated Cu-Mn mixed oxide for the Chemical Looping with Oxygen Uncoupling (CLOU) process," Applied Energy, Elsevier, vol. 208(C), pages 561-570.
- Tescari, Stefania & Neumann, Nicole Carina & Sundarraj, Pradeepkumar & Moumin, Gkiokchan & Rincon Duarte, Juan Pablo & Linder, Marc & Roeb, Martin, 2022. "Storing solar energy in continuously moving redox particles – Experimental analysis of charging and discharging reactors," Applied Energy, Elsevier, vol. 308(C).
- Siriwardane, Ranjani & Riley, Jarrett & Bayham, Samuel & Straub, Douglas & Tian, Hanjing & Weber, Justin & Richards, George, 2018. "50-kWth methane/air chemical looping combustion tests with commercially prepared CuO-Fe2O3-alumina oxygen carrier with two different techniques," Applied Energy, Elsevier, vol. 213(C), pages 92-99.
- Fredrik Hildor & Tobias Mattisson & Carl Linderholm & Henrik Leion, 2023. "Metal impregnation on steel converter slag as an oxygen carrier," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 13(4), pages 509-519, August.
- Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
- Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
- Zhang, Hao & Hong, Hui & Jiang, Qiongqiong & Deng, Ya'nan & Jin, Hongguang & Kang, Qilan, 2018. "Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4," Applied Energy, Elsevier, vol. 211(C), pages 259-268.
- Siriwardane, Ranjani & Benincosa, William & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier," Applied Energy, Elsevier, vol. 183(C), pages 1550-1564.
- Basavaraja, R.J. & Jayanti, S., 2015. "Viability of fuel switching of a gas-fired power plant operating in chemical looping combustion mode," Energy, Elsevier, vol. 81(C), pages 213-221.
- Medrano, J.A. & Potdar, I. & Melendez, J. & Spallina, V. & Pacheco-Tanaka, D.A. & van Sint Annaland, M. & Gallucci, F., 2018. "The membrane-assisted chemical looping reforming concept for efficient H2 production with inherent CO2 capture: Experimental demonstration and model validation," Applied Energy, Elsevier, vol. 215(C), pages 75-86.
- Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
- Galinsky, Nathan & Mishra, Amit & Zhang, Jia & Li, Fanxing, 2015. "Ca1−xAxMnO3 (A=Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 157(C), pages 358-367.
- Ping Wang & Nicholas Means & Dushyant Shekhawat & David Berry & Mehrdad Massoudi, 2015. "Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review," Energies, MDPI, vol. 8(10), pages 1-31, September.
- Galinsky, Nathan & Sendi, Marwan & Bowers, Lindsay & Li, Fanxing, 2016. "CaMn1−xBxO3−δ (B=Al, V, Fe, Co, and Ni) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 174(C), pages 80-87.
- Bayham, Samuel & McGiveron, Omar & Tong, Andrew & Chung, Elena & Kathe, Mandar & Wang, Dawei & Zeng, Liang & Fan, Liang-Shih, 2015. "Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal," Applied Energy, Elsevier, vol. 145(C), pages 354-363.
- Medrano, J.A. & Hamers, H.P. & Williams, G. & van Sint Annaland, M. & Gallucci, F., 2015. "NiO/CaAl2O4 as active oxygen carrier for low temperature chemical looping applications," Applied Energy, Elsevier, vol. 158(C), pages 86-96.
- Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.
- Jacobs, M. & Van Noyen, J. & Larring, Y. & Mccann, M. & Pishahang, M. & Amini, S. & Ortiz, M. & Galluci, F. & Sint-Annaland, M.V. & Tournigant, D. & Louradour, E. & Snijkers, F., 2015. "Thermal and mechanical behaviour of oxygen carrier materials for chemical looping combustion in a packed bed reactor," Applied Energy, Elsevier, vol. 157(C), pages 374-381.
- Samuel Bayham & Ronald Breault & Justin Weber, 2017. "Chemical Looping Combustion of Hematite Ore with Methane and Steam in a Fluidized Bed Reactor," Energies, MDPI, vol. 10(8), pages 1-22, August.
- Ma, Jinchen & Zhao, Haibo & Tian, Xin & Wei, Yijie & Rajendran, Sharmen & Zhang, Yongliang & Bhattacharya, Sankar & Zheng, Chuguang, 2015. "Chemical looping combustion of coal in a 5kWth interconnected fluidized bed reactor using hematite as oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 304-313.
- Lucia Blas & Patrick Dutournié & Mejdi Jeguirim & Ludovic Josien & David Chiche & Stephane Bertholin & Arnold Lambert, 2017. "Numerical Modeling of Oxygen Carrier Performances (NiO/NiAl 2 O 4 ) for Chemical-Looping Combustion," Energies, MDPI, vol. 10(7), pages 1-16, June.
- Schmitz, Matthias & Linderholm, Carl Johan, 2016. "Performance of calcium manganate as oxygen carrier in chemical looping combustion of biochar in a 10kW pilot," Applied Energy, Elsevier, vol. 169(C), pages 729-737.
- Mayer, Karl & Penthor, Stefan & Pröll, Tobias & Hofbauer, Hermann, 2015. "The different demands of oxygen carriers on the reactor system of a CLC plant – Results of oxygen carrier testing in a 120kWth pilot plant," Applied Energy, Elsevier, vol. 157(C), pages 323-329.
- Kang, Dohyung & Lim, Hyun Suk & Lee, Minbeom & Lee, Jae W., 2018. "Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane," Applied Energy, Elsevier, vol. 211(C), pages 174-186.
More about this item
Keywords
Manganese ore; Chemical looping combustion; Oxygen carrier;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:940-947. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.