IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i6-7p1338-1349.html
   My bibliography  Save this article

Review on solar-driven ejector refrigeration technologies

Author

Listed:
  • Abdulateef, J.M.
  • Sopian, K.
  • Alghoul, M.A.
  • Sulaiman, M.Y.

Abstract

The objective of this paper is to provide a literature review on solar-driven ejector refrigeration systems and to give useful guidelines regarding background and operating principles of ejector. The development history and recent progress in solar-driven ejector refrigeration systems are reported and categorized. It shows that solar-driven ejector refrigeration technologies are not only can serve the needs for cooling requirements such as air-conditioning and ice-making and medical or food preservation in remote areas, but also can meet demand for energy conservation and environment protection. For these reasons, the research activities in this sector are still increasing to solve the crucial points that make these systems not yet ready to compete with the well-known vapour compression system. However, a lot of research work still needs to be done for large-scale applications in industry and for the replacement of conventional refrigeration machines.

Suggested Citation

  • Abdulateef, J.M. & Sopian, K. & Alghoul, M.A. & Sulaiman, M.Y., 2009. "Review on solar-driven ejector refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1338-1349, August.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:6-7:p:1338-1349
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(08)00110-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murthy, S.Srinivasa & Balasubramanian, R. & Murthy, M.V.Krishna, 1991. "Experiments on vapour jet refrigeration system suitable for solar energy applications," Renewable Energy, Elsevier, vol. 1(5), pages 757-768.
    2. Alexis, G.K. & Karayiannis, E.K., 2005. "A solar ejector cooling system using refrigerant R134a in the Athens area," Renewable Energy, Elsevier, vol. 30(9), pages 1457-1469.
    3. Li, M. & Wang, R.Z., 2002. "A study of the effects of collector and environment parameters on the performance of a solar powered solid adsorption refrigerator," Renewable Energy, Elsevier, vol. 27(3), pages 369-382.
    4. Sözen, Adnan & Özalp, Mehmet, 2005. "Solar-driven ejector-absorption cooling system," Applied Energy, Elsevier, vol. 80(1), pages 97-113, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    2. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    3. Allouhi, A. & Kousksou, T. & Jamil, A. & Bruel, P. & Mourad, Y. & Zeraouli, Y., 2015. "Solar driven cooling systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 159-181.
    4. Braimakis, Konstantinos, 2021. "Solar ejector cooling systems: A review," Renewable Energy, Elsevier, vol. 164(C), pages 566-602.
    5. Yan, Jia & Cai, Wenjian & Zhao, Lei & Li, Yanzhong & Lin, Chen, 2013. "Performance evaluation of a combined ejector-vapor compression cycle," Renewable Energy, Elsevier, vol. 55(C), pages 331-337.
    6. Brites, G.J.V.N. & Costa, J.J. & Costa, V.A.F., 2016. "Influence of the design parameters on the overall performance of a solar adsorption refrigerator," Renewable Energy, Elsevier, vol. 86(C), pages 238-250.
    7. Li, M. & Huang, H.B. & Wang, R.Z. & Wang, L.L. & Cai, W.D. & Yang, W.M., 2004. "Experimental study on adsorbent of activated carbon with refrigerant of methanol and ethanol for solar ice maker," Renewable Energy, Elsevier, vol. 29(15), pages 2235-2244.
    8. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    9. Lattieff, Farkad A. & Atiya, Mohammed A. & Al-Hemiri, Adel A., 2019. "Test of solar adsorption air-conditioning powered by evacuated tube collectors under the climatic conditions of Iraq," Renewable Energy, Elsevier, vol. 142(C), pages 20-29.
    10. Saeid, Omar & Hashem, Gamal & Etaig, Saleh & Belgasim, Basim & Sagade, Atul, 2024. "Performance assessment of ammonia base solar ejector cooling system emphasizing ejector geometries: A detailed CFD analysis," Energy, Elsevier, vol. 301(C).
    11. Meyer, A.J. & Harms, T.M. & Dobson, R.T., 2009. "Steam jet ejector cooling powered by waste or solar heat," Renewable Energy, Elsevier, vol. 34(1), pages 297-306.
    12. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    13. Hernández, J.A. & Bassam, A. & Siqueiros, J. & Juárez-Romero, D., 2009. "Optimum operating conditions for a water purification process integrated to a heat transformer with energy recycling using neural network inverse," Renewable Energy, Elsevier, vol. 34(4), pages 1084-1091.
    14. Ersoy, H. Kursad & Yalcin, Sakir & Yapici, Rafet & Ozgoren, Muammer, 2007. "Performance of a solar ejector cooling-system in the southern region of Turkey," Applied Energy, Elsevier, vol. 84(9), pages 971-983, September.
    15. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    16. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    17. Eicker, Ursula & Pietruschka, Dirk & Haag, Maximilian & Schmitt, Andreas, 2015. "Systematic design and analysis of solar thermal cooling systems in different climates," Renewable Energy, Elsevier, vol. 80(C), pages 827-836.
    18. Anand, S. & Gupta, A. & Tyagi, S.K., 2015. "Solar cooling systems for climate change mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 143-161.
    19. Yan, Jia & Cai, Wenjian & Li, Yanzhong, 2012. "Geometry parameters effect for air-cooled ejector cooling systems with R134a refrigerant," Renewable Energy, Elsevier, vol. 46(C), pages 155-163.
    20. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2014. "Review and future trends of solar adsorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 102-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:6-7:p:1338-1349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.