IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3061-d370942.html
   My bibliography  Save this article

Evaporative Cooling Options for Building Air-Conditioning: A Comprehensive Study for Climatic Conditions of Multan (Pakistan)

Author

Listed:
  • Shazia Noor

    (Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan
    Department of Mechanical Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan)

  • Hadeed Ashraf

    (Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan)

  • Muhammad Sultan

    (Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan)

  • Zahid Mahmood Khan

    (Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan)

Abstract

This study provides comprehensive details of evaporative cooling options for building air-conditioning (AC) in Multan (Pakistan). Standalone evaporative cooling and standalone vapor compression AC (VCAC) systems are commonly used in Pakistan. Therefore, seven AC system configurations comprising of direct evaporative cooling (DEC), indirect evaporative cooling (IEC), VCAC, and their possible combinations, are explored for the climatic conditions of Multan. The study aims to explore the optimum AC system configuration for the building AC from the viewpoints of cooling capacity, system performance, energy consumption, and CO 2 emissions. A simulation model was designed in DesignBuilder and simulated using EnergyPlus in order to optimize the applicability of the proposed systems. The standalone VCAC and hybrid IEC-VCAC & IEC-DEC-VCAC system configurations could achieve the desired human thermal comfort. The standalone DEC resulted in a maximum COP of 4.5, whereas, it was 2.1 in case of the hybrid IEC-DEC-VCAC system. The hybrid IEC-DEC-VCAC system achieved maximum temperature gradient (21 °C) and relatively less CO 2 emissions as compared to standalone VCAC. In addition, it provided maximum cooling capacity (184 kW for work input of 100 kW), which is 85% higher than the standalone DEC system. Furthermore, it achieved neutral to slightly cool human thermal comfort i.e., 0 to −1 predicted mean vote and 30% of predicted percentage dissatisfied. Thus, the study concludes the hybrid IEC-DEC-VCAC as an optimum configuration for building AC in Multan.

Suggested Citation

  • Shazia Noor & Hadeed Ashraf & Muhammad Sultan & Zahid Mahmood Khan, 2020. "Evaporative Cooling Options for Building Air-Conditioning: A Comprehensive Study for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(12), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3061-:d:370942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3061/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3061/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru, 2018. "Optimization of adsorption isotherm types for desiccant air-conditioning applications," Renewable Energy, Elsevier, vol. 121(C), pages 441-450.
    2. Wang, Huakeer & Lu, Wei & Wu, Zhigen & Zhang, Guanhua, 2020. "Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai," Renewable Energy, Elsevier, vol. 145(C), pages 52-64.
    3. Yousuf, I. & Ghumman, A.R. & Hashmi, H.N. & Kamal, M.A., 2014. "Carbon emissions from power sector in Pakistan and opportunities to mitigate those," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 71-77.
    4. Kim, Min-Hwi & Jeong, Jae-Weon, 2013. "Cooling performance of a 100% outdoor air system integrated with indirect and direct evaporative coolers," Energy, Elsevier, vol. 52(C), pages 245-257.
    5. Wang, Shengwei & Tang, Rui, 2017. "Supply-based feedback control strategy of air-conditioning systems for direct load control of buildings responding to urgent requests of smart grids," Applied Energy, Elsevier, vol. 201(C), pages 419-432.
    6. Farmahini-Farahani, Moien & Delfani, Shahram & Esmaeelian, Jafar, 2012. "Exergy analysis of evaporative cooling to select the optimum system in diverse climates," Energy, Elsevier, vol. 40(1), pages 250-257.
    7. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    8. Kang, Won Hee & Lee, Jong Man & Yeon, Sang Hun & Park, Min Kyeong & Kim, Chul Ho & Lee, Je Hyeon & Moon, Jin Woo & Lee, Kwang Ho, 2020. "Modeling, calibration, and sensitivity analysis of direct expansion AHU-Water source VRF system," Energy, Elsevier, vol. 199(C).
    9. Karimi, Mohammad Sadjad & Fazelpour, Farivar & Rosen, Marc A. & Shams, Mehrzad, 2019. "Comparative study of solar-powered underfloor heating system performance in distinctive climates," Renewable Energy, Elsevier, vol. 130(C), pages 524-535.
    10. Yang, Zheng & Ghahramani, Ali & Becerik-Gerber, Burcin, 2016. "Building occupancy diversity and HVAC (heating, ventilation, and air conditioning) system energy efficiency," Energy, Elsevier, vol. 109(C), pages 641-649.
    11. Qiu, Changyu & Yi, Yun Kyu & Wang, Meng & Yang, Hongxing, 2020. "Coupling an artificial neuron network daylighting model and building energy simulation for vacuum photovoltaic glazing," Applied Energy, Elsevier, vol. 263(C).
    12. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    13. Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2016. "Steady-state investigation of water vapor adsorption for thermally driven adsorption based greenhouse air-conditioning system," Renewable Energy, Elsevier, vol. 86(C), pages 785-795.
    14. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    15. Lin, Jie & Bui, Duc Thuan & Wang, Ruzhu & Chua, Kian Jon, 2018. "On the exergy analysis of the counter-flow dew point evaporative cooler," Energy, Elsevier, vol. 165(PB), pages 958-971.
    16. Sultan, Muhammad & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2015. "An overview of solid desiccant dehumidification and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 16-29.
    17. Muhammad Kashif & Hassan Niaz & Muhammad Sultan & Takahiko Miyazaki & Yongqiang Feng & Muhammad Usman & Muhammad W. Shahzad & Yasir Niaz & Muhammad M. Waqas & Imran Ali, 2020. "Study on Desiccant and Evaporative Cooling Systems for Livestock Thermal Comfort: Theory and Experiments," Energies, MDPI, vol. 13(11), pages 1-18, May.
    18. Im, Piljae & Joe, Jaewan & Bae, Yeonjin & New, Joshua R., 2020. "Empirical validation of building energy modeling for multi-zones commercial buildings in cooling season," Applied Energy, Elsevier, vol. 261(C).
    19. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    20. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    21. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    22. Liu, Yuting & Yang, Xu & Li, Junming & Zhao, Xudong, 2018. "Energy savings of hybrid dew-point evaporative cooler and micro-channel separated heat pipe cooling systems for computer data centers," Energy, Elsevier, vol. 163(C), pages 629-640.
    23. Ceballos-Fuentealba, Irlanda & Álvarez-Miranda, Eduardo & Torres-Fuchslocher, Carlos & del Campo-Hitschfeld, María Luisa & Díaz-Guerrero, John, 2019. "A simulation and optimisation methodology for choosing energy efficiency measures in non-residential buildings," Applied Energy, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hadeed Ashraf & Muhammad Sultan & Redmond R. Shamshiri & Farrukh Abbas & Muhammad Farooq & Uzair Sajjad & Hafiz Md-Tahir & Muhammad H. Mahmood & Fiaz Ahmad & Yousaf R. Taseer & Aamir Shahzad & Badar M, 2021. "Dynamic Evaluation of Desiccant Dehumidification Evaporative Cooling Options for Greenhouse Air-Conditioning Application in Multan (Pakistan)," Energies, MDPI, vol. 14(4), pages 1-21, February.
    2. Hafiz M. Asfahan & Uzair Sajjad & Muhammad Sultan & Imtiyaz Hussain & Khalid Hamid & Mubasher Ali & Chi-Chuan Wang & Redmond R. Shamshiri & Muhammad Usman Khan, 2021. "Artificial Intelligence for the Prediction of the Thermal Performance of Evaporative Cooling Systems," Energies, MDPI, vol. 14(13), pages 1-20, July.
    3. Faizan Shabir & Muhammad Sultan & Yasir Niaz & Muhammad Usman & Sobhy M. Ibrahim & Yongqiang Feng & Bukke Kiran Naik & Abdul Nasir & Imran Ali, 2020. "Steady-State Investigation of Carbon-Based Adsorbent–Adsorbate Pairs for Heat Transformation Application," Sustainability, MDPI, vol. 12(17), pages 1-15, August.
    4. Hadeed Ashraf & Muhammad Sultan & Uzair Sajjad & Muhammad Wakil Shahzad & Muhammad Farooq & Sobhy M. Ibrahim & Muhammad Usman Khan & Muhammad Ahmad Jamil, 2022. "Potential Investigation of Membrane Energy Recovery Ventilators for the Management of Building Air-Conditioning Loads," Energies, MDPI, vol. 15(6), pages 1-23, March.
    5. Khawar Shahzad & Muhammad Sultan & Muhammad Bilal & Hadeed Ashraf & Muhammad Farooq & Takahiko Miyazaki & Uzair Sajjad & Imran Ali & Muhammad I. Hussain, 2021. "Experiments on Energy-Efficient Evaporative Cooling Systems for Poultry Farm Application in Multan (Pakistan)," Sustainability, MDPI, vol. 13(5), pages 1-21, March.
    6. Muhammad Aleem & Ghulam Hussain & Muhammad Sultan & Takahiko Miyazaki & Muhammad H. Mahmood & Muhammad I. Sabir & Abdul Nasir & Faizan Shabir & Zahid M. Khan, 2020. "Experimental Investigation of Desiccant Dehumidification Cooling System for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(21), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Aleem & Ghulam Hussain & Muhammad Sultan & Takahiko Miyazaki & Muhammad H. Mahmood & Muhammad I. Sabir & Abdul Nasir & Faizan Shabir & Zahid M. Khan, 2020. "Experimental Investigation of Desiccant Dehumidification Cooling System for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(21), pages 1-23, October.
    2. Hadeed Ashraf & Muhammad Sultan & Uzair Sajjad & Muhammad Wakil Shahzad & Muhammad Farooq & Sobhy M. Ibrahim & Muhammad Usman Khan & Muhammad Ahmad Jamil, 2022. "Potential Investigation of Membrane Energy Recovery Ventilators for the Management of Building Air-Conditioning Loads," Energies, MDPI, vol. 15(6), pages 1-23, March.
    3. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Asfahan, Hafiz M. & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed A. & Shahzad, Muhammad W. & Worek, William, 2022. "Recent development in adsorption desalination: A state of the art review," Applied Energy, Elsevier, vol. 328(C).
    5. Hafiz M. Asfahan & Uzair Sajjad & Muhammad Sultan & Imtiyaz Hussain & Khalid Hamid & Mubasher Ali & Chi-Chuan Wang & Redmond R. Shamshiri & Muhammad Usman Khan, 2021. "Artificial Intelligence for the Prediction of the Thermal Performance of Evaporative Cooling Systems," Energies, MDPI, vol. 14(13), pages 1-20, July.
    6. Oh, Seung Jin & Shahzad, Muhammad Wakil & Burhan, Muhammad & Chun, Wongee & Kian Jon, Chua & KumJa, M. & Ng, Kim Choon, 2019. "Approaches to energy efficiency in air conditioning: A comparative study on purge configurations for indirect evaporative cooling," Energy, Elsevier, vol. 168(C), pages 505-515.
    7. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Shahzad, Muhammad Wakil & Lin, Jie & Xu, Ben Bin & Dala, Laurent & Chen, Qian & Burhan, Muhammad & Sultan, Muhammad & Worek, William & Ng, Kim Choon, 2021. "A spatiotemporal indirect evaporative cooler enabled by transiently interceding water mist," Energy, Elsevier, vol. 217(C).
    10. Khawar Shahzad & Muhammad Sultan & Muhammad Bilal & Hadeed Ashraf & Muhammad Farooq & Takahiko Miyazaki & Uzair Sajjad & Imran Ali & Muhammad I. Hussain, 2021. "Experiments on Energy-Efficient Evaporative Cooling Systems for Poultry Farm Application in Multan (Pakistan)," Sustainability, MDPI, vol. 13(5), pages 1-21, March.
    11. Campaniço, Hugo & Hollmuller, Pierre & Soares, Pedro M.M., 2014. "Assessing energy savings in cooling demand of buildings using passive cooling systems based on ventilation," Applied Energy, Elsevier, vol. 134(C), pages 426-438.
    12. Hadeed Ashraf & Muhammad Sultan & Redmond R. Shamshiri & Farrukh Abbas & Muhammad Farooq & Uzair Sajjad & Hafiz Md-Tahir & Muhammad H. Mahmood & Fiaz Ahmad & Yousaf R. Taseer & Aamir Shahzad & Badar M, 2021. "Dynamic Evaluation of Desiccant Dehumidification Evaporative Cooling Options for Greenhouse Air-Conditioning Application in Multan (Pakistan)," Energies, MDPI, vol. 14(4), pages 1-21, February.
    13. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Liu, Lin, 2021. "Review of the recent advances in dew point evaporative cooling technology: 3E (energy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Zanchini, Enzo & Naldi, Claudia, 2019. "Energy saving obtainable by applying a commercially available M-cycle evaporative cooling system to the air conditioning of an office building in North Italy," Energy, Elsevier, vol. 179(C), pages 975-988.
    15. Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru, 2018. "Optimization of adsorption isotherm types for desiccant air-conditioning applications," Renewable Energy, Elsevier, vol. 121(C), pages 441-450.
    16. Campaniço, Hugo & Soares, Pedro M.M. & Hollmuller, Pierre & Cardoso, Rita M., 2016. "Climatic cooling potential and building cooling demand savings: High resolution spatiotemporal analysis of direct ventilation and evaporative cooling for the Iberian Peninsula," Renewable Energy, Elsevier, vol. 85(C), pages 766-776.
    17. Zhou, Yuanyuan & Zhang, Tao & Wang, Fang & Yu, Yanshun, 2018. "Performance analysis of a novel thermoelectric assisted indirect evaporative cooling system," Energy, Elsevier, vol. 162(C), pages 299-308.
    18. Faizan Shabir & Muhammad Sultan & Yasir Niaz & Muhammad Usman & Sobhy M. Ibrahim & Yongqiang Feng & Bukke Kiran Naik & Abdul Nasir & Imran Ali, 2020. "Steady-State Investigation of Carbon-Based Adsorbent–Adsorbate Pairs for Heat Transformation Application," Sustainability, MDPI, vol. 12(17), pages 1-15, August.
    19. Yugang Wang & Xiang Huang & Li Li, 2018. "Comparative Study of the Cross-Flow Heat and Mass Exchangers for Indirect Evaporative Cooling Using Numerical Methods," Energies, MDPI, vol. 11(12), pages 1-14, December.
    20. Oliveira, Cíntia Carla Melgaço de & Brittes, José Luiz Pereira & Silveira Junior, Vivaldo, 2019. "Dynamic operating conditions strategy for water hybrid cooling under variable heating demand," Applied Energy, Elsevier, vol. 237(C), pages 635-645.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3061-:d:370942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.