IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v260y2020ics0306261919319762.html
   My bibliography  Save this article

Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms

Author

Listed:
  • Salata, Ferdinando
  • Ciancio, Virgilio
  • Dell'Olmo, Jacopo
  • Golasi, Iacopo
  • Palusci, Olga
  • Coppi, Massimo

Abstract

The energy requalification of existing buildings entails the fulfillment of different, often conflicting, criteria, such as the reduction of the specific annual energy demand, the containment of the construction costs, the decrease in the annual energy operating cost and the reduction of climate-change gas emissions. Therefore, optimization methods based on the application of computational algorithms are essential to determine solutions that meet multi-objective criteria and so highly optimized to be on the Pareto frontier. In this work, a procedure for the optimization of existing buildings using genetic algorithms is presented. Building energy simulations conducted in the dynamic regime using EnergyPlus are coupled with an Active Archive Non-dominated Sorting Genetic Algorithm (aNSGA-II type). Using a residential building as a benchmark, this procedure is employed to evaluate the best retrofitting interventions for 19 European cities with different climates. The criteria taken into account in the optimization procedure are: the reduction in the annual specific energy demand, the decrease in the construction and installation costs, the reduction in the annual energy operating costs and the reduction in the greenhouse gas emissions. The results show the most advantageous energy retrofitting interventions fulfilling the criteria for the different geographical sites.

Suggested Citation

  • Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319762
    DOI: 10.1016/j.apenergy.2019.114289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919319762
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garshasbi, Samira & Kurnitski, Jarek & Mohammadi, Yousef, 2016. "A hybrid Genetic Algorithm and Monte Carlo simulation approach to predict hourly energy consumption and generation by a cluster of Net Zero Energy Buildings," Applied Energy, Elsevier, vol. 179(C), pages 626-637.
    2. Hachem-Vermette, Caroline & Grewal, Kuljeet Singh, 2019. "Investigation of the impact of residential mixture on energy and environmental performance of mixed use neighborhoods," Applied Energy, Elsevier, vol. 241(C), pages 362-379.
    3. Yang, Liu & Lam, Joseph C. & Tsang, C.L., 2008. "Energy performance of building envelopes in different climate zones in China," Applied Energy, Elsevier, vol. 85(9), pages 800-817, September.
    4. Široký, Jan & Oldewurtel, Frauke & Cigler, Jiří & Prívara, Samuel, 2011. "Experimental analysis of model predictive control for an energy efficient building heating system," Applied Energy, Elsevier, vol. 88(9), pages 3079-3087.
    5. Machairas, Vasileios & Tsangrassoulis, Aris & Axarli, Kleo, 2014. "Algorithms for optimization of building design: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 101-112.
    6. Salata, Ferdinando & Golasi, Iacopo & di Salvatore, Maicol & de Lieto Vollaro, Andrea, 2016. "Energy and reliability optimization of a system that combines daylighting and artificial sources. A case study carried out in academic buildings," Applied Energy, Elsevier, vol. 169(C), pages 250-266.
    7. Chiara Burattini & Fabio Nardecchia & Fabio Bisegna & Lucia Cellucci & Franco Gugliermetti & Andrea De Lieto Vollaro & Ferdinando Salata & Iacopo Golasi, 2015. "Methodological Approach to the Energy Analysis of Unconstrained Historical Buildings," Sustainability, MDPI, Open Access Journal, vol. 7(8), pages 1-17, August.
    8. Ferdinando Salata & Anna Tarsitano & Iacopo Golasi & Emanuele De Lieto Vollaro & Massimo Coppi & Andrea De Lieto Vollaro, 2016. "Application of Absorption Systems Powered by Solar Ponds in Warm Climates for the Air Conditioning in Residential Buildings," Energies, MDPI, Open Access Journal, vol. 9(10), pages 1-18, October.
    9. Huang, Pei & Fan, Cheng & Zhang, Xingxing & Wang, Jiayuan, 2019. "A hierarchical coordinated demand response control for buildings with improved performances at building group," Applied Energy, Elsevier, vol. 242(C), pages 684-694.
    10. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    11. Koo, Choongwan & Hong, Taehoon & Lee, Minhyun & Kim, Jimin, 2016. "An integrated multi-objective optimization model for determining the optimal solution in implementing the rooftop photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 822-837.
    12. Costa, Andrea & Keane, Marcus M. & Torrens, J. Ignacio & Corry, Edward, 2013. "Building operation and energy performance: Monitoring, analysis and optimisation toolkit," Applied Energy, Elsevier, vol. 101(C), pages 310-316.
    13. Chantrelle, Fanny Pernodet & Lahmidi, Hicham & Keilholz, Werner & Mankibi, Mohamed El & Michel, Pierre, 2011. "Development of a multicriteria tool for optimizing the renovation of buildings," Applied Energy, Elsevier, vol. 88(4), pages 1386-1394, April.
    14. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Koo, Choongwan & Lee, Minhyun & Ji, Changyoon & Jeong, Jaewook, 2016. "An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system," Energy, Elsevier, vol. 102(C), pages 416-426.
    15. Webb, Amanda L., 2017. "Energy retrofits in historic and traditional buildings: A review of problems and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 748-759.
    16. Shen, Pengyuan & Braham, William & Yi, Yunkyu, 2018. "Development of a lightweight building simulation tool using simplified zone thermal coupling for fast parametric study," Applied Energy, Elsevier, vol. 223(C), pages 188-214.
    17. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
    18. Gonçalves, Ivo & Gomes, Álvaro & Henggeler Antunes, Carlos, 2019. "Optimizing the management of smart home energy resources under different power cost scenarios," Applied Energy, Elsevier, vol. 242(C), pages 351-363.
    19. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    20. Petri, Ioan & Li, Haijiang & Rezgui, Yacine & Chunfeng, Yang & Yuce, Baris & Jayan, Bejay, 2014. "A modular optimisation model for reducing energy consumption in large scale building facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 990-1002.
    21. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    22. Ferdinando Salata & Chiara Alippi & Anna Tarsitano & Iacopo Golasi & Massimo Coppi, 2015. "A First Approach to Natural Thermoventilation of Residential Buildings through Ventilation Chimneys Supplied by Solar Ponds," Sustainability, MDPI, Open Access Journal, vol. 7(7), pages 1-15, July.
    23. Chung, William, 2011. "Review of building energy-use performance benchmarking methodologies," Applied Energy, Elsevier, vol. 88(5), pages 1470-1479, May.
    24. Raza, Muhammad Qamar & Khosravi, Abbas, 2015. "A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1352-1372.
    25. Francesca Pagliaro & Lucia Cellucci & Chiara Burattini & Fabio Bisegna & Franco Gugliermetti & Andrea De Lieto Vollaro & Ferdinando Salata & Iacopo Golasi, 2015. "A Methodological Comparison between Energy and Environmental Performance Evaluation," Sustainability, MDPI, Open Access Journal, vol. 7(8), pages 1-19, July.
    26. Ferdinando Salata & Iacopo Golasi & Giacomo Falanga & Marco Allegri & Emanuele De Lieto Vollaro & Fabio Nardecchia & Francesca Pagliaro & Franco Gugliermetti & Andrea De Lieto Vollaro, 2015. "Maintenance and Energy Optimization of Lighting Systems for the Improvement of Historic Buildings: A Case Study," Sustainability, MDPI, Open Access Journal, vol. 7(8), pages 1-19, August.
    27. Yun, Geun Young & Steemers, Koen, 2011. "Behavioural, physical and socio-economic factors in household cooling energy consumption," Applied Energy, Elsevier, vol. 88(6), pages 2191-2200, June.
    28. Kotireddy, Rajesh & Hoes, Pieter-Jan & Hensen, Jan L.M., 2018. "A methodology for performance robustness assessment of low-energy buildings using scenario analysis," Applied Energy, Elsevier, vol. 212(C), pages 428-442.
    29. Mustafaraj, Giorgio & Marini, Dashamir & Costa, Andrea & Keane, Marcus, 2014. "Model calibration for building energy efficiency simulation," Applied Energy, Elsevier, vol. 130(C), pages 72-85.
    30. Foucquier, Aurélie & Robert, Sylvain & Suard, Frédéric & Stéphan, Louis & Jay, Arnaud, 2013. "State of the art in building modelling and energy performances prediction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 272-288.
    31. Andaloro, Antonio P.F. & Salomone, Roberta & Ioppolo, Giuseppe & Andaloro, Laura, 2010. "Energy certification of buildings: A comparative analysis of progress towards implementation in European countries," Energy Policy, Elsevier, vol. 38(10), pages 5840-5866, October.
    32. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Napolitano, Davide Ferdinando, 2019. "Retrofit of villas on Mediterranean coastlines: Pareto optimization with a view to energy-efficiency and cost-effectiveness," Applied Energy, Elsevier, vol. 254(C).
    33. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    34. Li, Fan & Sun, Bo & Zhang, Chenghui & Zhang, Lizhi, 2018. "Operation optimization for combined cooling, heating, and power system with condensation heat recovery," Applied Energy, Elsevier, vol. 230(C), pages 305-316.
    35. Sanhudo, Luís & Ramos, Nuno M.M. & Poças Martins, João & Almeida, Ricardo M.S.F. & Barreira, Eva & Simões, M. Lurdes & Cardoso, Vítor, 2018. "Building information modeling for energy retrofitting – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 249-260.
    36. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    37. Chwieduk, Dorota, 2003. "Towards sustainable-energy buildings," Applied Energy, Elsevier, vol. 76(1-3), pages 211-217, September.
    38. Li, Hangxin & Wang, Shengwei & Cheung, Howard, 2018. "Sensitivity analysis of design parameters and optimal design for zero/low energy buildings in subtropical regions," Applied Energy, Elsevier, vol. 228(C), pages 1280-1291.
    39. Mohamed, Ayman & Hasan, Ala & Sirén, Kai, 2014. "Fulfillment of net-zero energy building (NZEB) with four metrics in a single family house with different heating alternatives," Applied Energy, Elsevier, vol. 114(C), pages 385-399.
    40. Virgilio Ciancio & Serena Falasca & Iacopo Golasi & Gabriele Curci & Massimo Coppi & Ferdinando Salata, 2018. "Influence of Input Climatic Data on Simulations of Annual Energy Needs of a Building: EnergyPlus and WRF Modeling for a Case Study in Rome (Italy)," Energies, MDPI, Open Access Journal, vol. 11(10), pages 1-17, October.
    41. Lu, Yuehong & Wang, Shengwei & Yan, Chengchu & Huang, Zhijia, 2017. "Robust optimal design of renewable energy system in nearly/net zero energy buildings under uncertainties," Applied Energy, Elsevier, vol. 187(C), pages 62-71.
    42. Stephan, André & Crawford, Robert H. & de Myttenaere, Kristel, 2013. "A comprehensive assessment of the life cycle energy demand of passive houses," Applied Energy, Elsevier, vol. 112(C), pages 23-34.
    43. Zhou, Zhihua & Feng, Lei & Zhang, Shuzhen & Wang, Chendong & Chen, Guanyi & Du, Tao & Li, Yasong & Zuo, Jian, 2016. "The operational performance of “net zero energy building”: A study in China," Applied Energy, Elsevier, vol. 177(C), pages 716-728.
    44. Salata, F. & Coppi, M., 2014. "A first approach study on the desalination of sea water using heat transformers powered by solar ponds," Applied Energy, Elsevier, vol. 136(C), pages 611-618.
    45. AlAjmi, Ali & Abou-Ziyan, Hosny & Ghoneim, Adel, 2016. "Achieving annual and monthly net-zero energy of existing building in hot climate," Applied Energy, Elsevier, vol. 165(C), pages 511-521.
    46. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    47. Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moazzen, Nazanin & Ashrafian, Touraj & Yilmaz, Zerrin & Karagüler, Mustafa Erkan, 2020. "A multi-criteria approach to affordable energy-efficient retrofit of primary school buildings," Applied Energy, Elsevier, vol. 268(C).
    2. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    3. Shazia Noor & Hadeed Ashraf & Muhammad Sultan & Zahid Mahmood Khan, 2020. "Evaporative Cooling Options for Building Air-Conditioning: A Comprehensive Study for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, Open Access Journal, vol. 13(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319762. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.