IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v281y2021ics0306261920314872.html
   My bibliography  Save this article

Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data

Author

Listed:
  • Chinchilla, Monica
  • Santos-Martín, David
  • Carpintero-Rentería, Miguel
  • Lemon, Scott

Abstract

This study provides several models for accurately computing the annual optimum tilt angle for fixed solar photovoltaic arrays or solar collectors, in any location of the world. The optimum tilt angle that maximizes the annual energy yield can therefore be easily calculated in the absence of meteorological data and simulation software tools. The proposed models are calculated using global horizontal radiation data collected from 2551 sites across the world. In the process, well-established submodels have been selected to estimate the hourly irradiance on any possible inclined surface, and its corresponding annual energy yield. After selecting the optimum angle for each location, through a regression analysis, a mathematical model that calculates annual optimum angles as a function of latitude has been developed. Furthermore, regression techniques such as neural networks and decision trees have been compared with the polynomial models. Finally, the results are compared to those obtained from high-quality 1-min measured irradiance data obtained at 52 research-class stations from the World Radiation Monitoring Center–Baseline Surface Radiation Network, providing a remarkably high number of validation data points. The results are analyzed, validated, and compared with previous research proposals proving the good performance of the proposed models.

Suggested Citation

  • Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920314872
    DOI: 10.1016/j.apenergy.2020.116056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920314872
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benghanem, M., 2011. "Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia," Applied Energy, Elsevier, vol. 88(4), pages 1427-1433, April.
    2. Yadav, Amit Kumar & Chandel, S.S., 2013. "Tilt angle optimization to maximize incident solar radiation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 503-513.
    3. Lave, Matthew & Kleissl, Jan, 2011. "Optimum fixed orientations and benefits of tracking for capturing solar radiation in the continental United States," Renewable Energy, Elsevier, vol. 36(3), pages 1145-1152.
    4. Bakirci, Kadir, 2012. "General models for optimum tilt angles of solar panels: Turkey case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6149-6159.
    5. Danandeh, M.A. & Mousavi G., S.M., 2018. "Solar irradiance estimation models and optimum tilt angle approaches: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 319-330.
    6. Ullah, Asad & Imran, Hassan & Maqsood, Zaki & Butt, Nauman Zafar, 2019. "Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan," Renewable Energy, Elsevier, vol. 139(C), pages 830-843.
    7. Ghimire, Sujan & Deo, Ravinesh C. & Raj, Nawin & Mi, Jianchun, 2019. "Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Raptis, P.I. & Kazadzis, S. & Psiloglou, B. & Kouremeti, N. & Kosmopoulos, P. & Kazantzidis, A., 2017. "Measurements and model simulations of solar radiation at tilted planes, towards the maximization of energy capture," Energy, Elsevier, vol. 130(C), pages 570-580.
    9. Shariah, Adnan & Al-Akhras, M-Ali & Al-Omari, I.A., 2002. "Optimizing the tilt angle of solar collectors," Renewable Energy, Elsevier, vol. 26(4), pages 587-598.
    10. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2017. "Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries," Renewable Energy, Elsevier, vol. 113(C), pages 563-579.
    11. Hay, John E., 1993. "Calculating solar radiation for horizontal surfaces—II. Empirically based approaches," Renewable Energy, Elsevier, vol. 3(4), pages 365-372.
    12. Ghosh, H.R. & Bhowmik, N.C. & Hussain, M., 2010. "Determining seasonal optimum tilt angles, solar radiations on variously oriented, single and double axis tracking surfaces at Dhaka," Renewable Energy, Elsevier, vol. 35(6), pages 1292-1297.
    13. Kambezidis, H.D. & Psiloglou, B.E. & Synodinou, B.M., 1997. "Comparison between measurements and models for daily solar irradiation on tilted surfaces in Athens, Greece," Renewable Energy, Elsevier, vol. 10(4), pages 505-518.
    14. Hay, John E., 1993. "Calculating solar radiation for inclined surfaces: Practical approaches," Renewable Energy, Elsevier, vol. 3(4), pages 373-380.
    15. Lv, Yuexia & Si, Pengfei & Rong, Xiangyang & Yan, Jinyue & Feng, Ya & Zhu, Xiaohong, 2018. "Determination of optimum tilt angle and orientation for solar collectors based on effective solar heat collection," Applied Energy, Elsevier, vol. 219(C), pages 11-19.
    16. Hay, John E., 1993. "Calculating solar radiation for horizontal surfaces—I. Theoretically based approaches," Renewable Energy, Elsevier, vol. 3(4), pages 357-364.
    17. Le Roux, W.G., 2016. "Optimum tilt and azimuth angles for fixed solar collectors in South Africa using measured data," Renewable Energy, Elsevier, vol. 96(PA), pages 603-612.
    18. Sun, Liangliang & Lu, Lin & Yang, Hongxing, 2012. "Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles," Applied Energy, Elsevier, vol. 90(1), pages 233-240.
    19. Hartley, L.E. & Martínez-Lozano, J.A. & Utrillas, M.P. & Tena, F. & Pedrós, R., 1999. "The optimisation of the angle of inclination of a solar collector to maximise the incident solar radiation," Renewable Energy, Elsevier, vol. 17(3), pages 291-309.
    20. Rowlands, Ian H. & Kemery, Briana Paige & Beausoleil-Morrison, Ian, 2011. "Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study," Energy Policy, Elsevier, vol. 39(3), pages 1397-1409, March.
    21. Bertrand, Cédric & Vanderveken, Gilles & Journée, Michel, 2015. "Evaluation of decomposition models of various complexity to estimate the direct solar irradiance over Belgium," Renewable Energy, Elsevier, vol. 74(C), pages 618-626.
    22. Hartner, Michael & Ortner, André & Hiesl, Albert & Haas, Reinhard, 2015. "East to west – The optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective," Applied Energy, Elsevier, vol. 160(C), pages 94-107.
    23. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    24. Torres, J.L. & De Blas, M. & García, A. & de Francisco, A., 2010. "Comparative study of various models in estimating hourly diffuse solar irradiance," Renewable Energy, Elsevier, vol. 35(6), pages 1325-1332.
    25. Tang, Runsheng & Wu, Tong, 2004. "Optimal tilt-angles for solar collectors used in China," Applied Energy, Elsevier, vol. 79(3), pages 239-248, November.
    26. David, Mathieu & Lauret, Philippe & Boland, John, 2013. "Evaluating tilted plane models for solar radiation using comprehensive testing procedures, at a southern hemisphere location," Renewable Energy, Elsevier, vol. 51(C), pages 124-131.
    27. Noorian, Ali Mohammad & Moradi, Isaac & Kamali, Gholam Ali, 2008. "Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces," Renewable Energy, Elsevier, vol. 33(6), pages 1406-1412.
    28. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    29. Armstrong, S. & Hurley, W.G., 2010. "A new methodology to optimise solar energy extraction under cloudy conditions," Renewable Energy, Elsevier, vol. 35(4), pages 780-787.
    30. Yadav, Somil & Panda, S.K. & Hachem-Vermette, Caroline, 2020. "Method to improve performance of building integrated photovoltaic thermal system having optimum tilt and facing directions," Applied Energy, Elsevier, vol. 266(C).
    31. Demain, Colienne & Journée, Michel & Bertrand, Cédric, 2013. "Evaluation of different models to estimate the global solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 50(C), pages 710-721.
    32. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    33. Jafarkazemi, Farzad & Saadabadi, S. Ali, 2013. "Optimum tilt angle and orientation of solar surfaces in Abu Dhabi, UAE," Renewable Energy, Elsevier, vol. 56(C), pages 44-49.
    34. Ridley, Barbara & Boland, John & Lauret, Philippe, 2010. "Modelling of diffuse solar fraction with multiple predictors," Renewable Energy, Elsevier, vol. 35(2), pages 478-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yujun & Yao, Ling & Jiang, Hou & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2022. "Spatial estimation of the optimum PV tilt angles in China by incorporating ground with satellite data," Renewable Energy, Elsevier, vol. 189(C), pages 1249-1258.
    2. Arsenio Barbón & Luis Bayón & Guzmán Díaz & Carlos A. Silva, 2022. "Investigation of the Effect of Albedo in Photovoltaic Systems for Urban Applications: Case Study for Spain," Energies, MDPI, vol. 15(21), pages 1-20, October.
    3. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Carreira-Fontao, V., 2022. "A methodology for an optimal design of ground-mounted photovoltaic power plants," Applied Energy, Elsevier, vol. 314(C).
    4. Dragos Machidon & Marcel Istrate, 2023. "Tilt Angle Adjustment for Incident Solar Energy Increase: A Case Study for Europe," Sustainability, MDPI, vol. 15(8), pages 1-12, April.
    5. Memme, Samuele & Fossa, Marco, 2022. "Maximum energy yield of PV surfaces in France and Italy from climate based equations for optimum tilt at different azimuth angles," Renewable Energy, Elsevier, vol. 200(C), pages 845-866.
    6. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Rodríguez-Suanzes, C., 2022. "Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications," Applied Energy, Elsevier, vol. 305(C).
    7. Karimzadeh Kolamroudi, Mohammad & Ilkan, Mustafa & Egelioglu, Fuat & Safaei, Babak, 2022. "Maximization of the output power of low concentrating photovoltaic systems by the application of reflecting mirrors," Renewable Energy, Elsevier, vol. 189(C), pages 822-835.
    8. Martin Spiller & Corinna Müller & Zara Mulholland & Paraskevi Louizidou & Frithjof C. Küpper & Kevin Knosala & Peter Stenzel, 2022. "Reducing Carbon Emissions from the Tourist Accommodation Sector on Non-Interconnected Islands: A Case Study of a Medium-Sized Hotel in Rhodes, Greece," Energies, MDPI, vol. 15(10), pages 1-24, May.
    9. Sungha Yoon & Jintae Park & Chaeyoung Lee & Sangkwon Kim & Yongho Choi & Soobin Kwak & Hyundong Kim & Junseok Kim, 2023. "Optimal Orientation of Solar Panels for Multi-Apartment Buildings," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    10. Tong Liu & Li Liu & Yufang He & Mengfei Sun & Jian Liu & Guochang Xu, 2021. "A Theoretical Optimum Tilt Angle Model for Solar Collectors from Keplerian Orbit," Energies, MDPI, vol. 14(15), pages 1-17, July.
    11. Yari, Shahram & Safarzadeh, Habibollah & Bahiraei, Mehdi, 2021. "Experimental study of an absorber coil in spherical solar collector with practical dimensions at different flow rates," Renewable Energy, Elsevier, vol. 180(C), pages 1248-1259.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    2. Kaddoura, Tarek O. & Ramli, Makbul A.M. & Al-Turki, Yusuf A., 2016. "On the estimation of the optimum tilt angle of PV panel in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 626-634.
    3. Kafka, Jennifer & Miller, Mark A., 2020. "The dual angle solar harvest (DASH) method: An alternative method for organizing large solar panel arrays that optimizes incident solar energy in conjunction with land use," Renewable Energy, Elsevier, vol. 155(C), pages 531-546.
    4. Yadav, Amit Kumar & Chandel, S.S., 2013. "Tilt angle optimization to maximize incident solar radiation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 503-513.
    5. Gönül, Ömer & Yazar, Fatih & Duman, A. Can & Güler, Önder, 2022. "A comparative techno-economic assessment of manually adjustable tilt mechanisms and automatic solar trackers for behind-the-meter PV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    7. Herrera-Romero, J.V. & Colorado-Garrido, D. & Escalante Soberanis, M.A. & Flota-Bañuelos, M., 2020. "Estimation of the optimum tilt angle of solar collectors in Coatzacoalcos, Veracruz," Renewable Energy, Elsevier, vol. 153(C), pages 615-623.
    8. Ullah, Asad & Imran, Hassan & Maqsood, Zaki & Butt, Nauman Zafar, 2019. "Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan," Renewable Energy, Elsevier, vol. 139(C), pages 830-843.
    9. Nicolás-Martín, Carolina & Santos-Martín, David & Chinchilla-Sánchez, Mónica & Lemon, Scott, 2020. "A global annual optimum tilt angle model for photovoltaic generation to use in the absence of local meteorological data," Renewable Energy, Elsevier, vol. 161(C), pages 722-735.
    10. Al Garni, Hassan Z. & Awasthi, Anjali & Wright, David, 2019. "Optimal orientation angles for maximizing energy yield for solar PV in Saudi Arabia," Renewable Energy, Elsevier, vol. 133(C), pages 538-550.
    11. Gökmen, Nuri & Hu, Weihao & Hou, Peng & Chen, Zhe & Sera, Dezso & Spataru, Sergiu, 2016. "Investigation of wind speed cooling effect on PV panels in windy locations," Renewable Energy, Elsevier, vol. 90(C), pages 283-290.
    12. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2016. "The effect of latitude on the performance of different solar trackers in Europe and Africa," Applied Energy, Elsevier, vol. 177(C), pages 896-906.
    13. Oh, Myeongchan & Kim, Jin-Young & Kim, Boyoung & Yun, Chang-Yeol & Kim, Chang Ki & Kang, Yong-Heack & Kim, Hyun-Goo, 2021. "Tolerance angle concept and formula for practical optimal orientation of photovoltaic panels," Renewable Energy, Elsevier, vol. 167(C), pages 384-394.
    14. Dey, Sumon & Lakshmanan, Madan Kumar & Pesala, Bala, 2018. "Optimal solar tree design for increased flexibility in seasonal energy extraction," Renewable Energy, Elsevier, vol. 125(C), pages 1038-1048.
    15. Moretón, R. & Lorenzo, E. & Pinto, A. & Muñoz, J. & Narvarte, L., 2017. "From broadband horizontal to effective in-plane irradiation: A review of modelling and derived uncertainty for PV yield prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 886-903.
    16. Ryszard Myhan & Karolina Szturo & Monika Panfil & Zbigniew Szwejkowski, 2020. "The Influence of Weather Conditions on the Optimal Setting of Photovoltaic Thermal Hybrid Solar Collectors—A Case Study," Energies, MDPI, vol. 13(18), pages 1-13, September.
    17. Piotr Michalak, 2021. "Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings," Energies, MDPI, vol. 14(14), pages 1-27, July.
    18. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Rodríguez-Suanzes, C., 2022. "Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications," Applied Energy, Elsevier, vol. 305(C).
    19. Raptis, P.I. & Kazadzis, S. & Psiloglou, B. & Kouremeti, N. & Kosmopoulos, P. & Kazantzidis, A., 2017. "Measurements and model simulations of solar radiation at tilted planes, towards the maximization of energy capture," Energy, Elsevier, vol. 130(C), pages 570-580.
    20. Liu, Yujun & Yao, Ling & Jiang, Hou & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2022. "Spatial estimation of the optimum PV tilt angles in China by incorporating ground with satellite data," Renewable Energy, Elsevier, vol. 189(C), pages 1249-1258.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920314872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.