IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v305y2022ics0306261921011351.html
   My bibliography  Save this article

Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications

Author

Listed:
  • Barbón, A.
  • Bayón-Cueli, C.
  • Bayón, L.
  • Rodríguez-Suanzes, C.

Abstract

A professional point of view suggests that photovoltaic systems should be installed at the optimum tilt angle and orientation. However, in photovoltaic systems integrated in buildings the flexibility of installation is common. This paper is organized in two different parts. In the first one, the energy losses caused by deviations from the tilt angle (β) and the orientation (γ) of the installation in relation to the ideal position are evaluated. This work considers the cloudy-sky conditions in each locality and theoretically calculates by applying the Cavaleri’s principle, the energy losses. Ten cities around the world, in the northern hemisphere, have been studied with a MATLAB code and the findings demonstrate that non-ideal tilt and azimuth angles can also lead to acceptable levels of electric energy generation. A photovoltaic system installed in South orientation (γ=0°) and β deviations of up to 10 (°) in relation to the optimum tilt angle has a very small influence on the energy losses. The energy losses are: 5%, 10%, 15% and 20% when β deviations are respectively: 21–23 (°), 31–33 (°), 37–40 (°) and 43–47 (°). Then, in the second part, an important application of this previous outcome comes out: the best distribution of the photovoltaic modules on a flat roof of irregular shape of an urban building is achieved.The aim of this work is to maximize the amount of energy get by a photovoltaic system. This engineering problem is highly complex as it involves 10 variables: the available flat roof area, the shape and the orientation of the available flat roof area, the dimensions (length and width) of the commercial photovoltaic modules, the orientation and the position of the photovoltaic modules, the number of the photovoltaic modules, the minimum distances (maintenance operations, to avoid shadowing effects) between rows of photovoltaic modules, and the minimum distance to the terrace boundary. In this context, this work aims to present a study to assist the decision-making.

Suggested Citation

  • Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Rodríguez-Suanzes, C., 2022. "Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications," Applied Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011351
    DOI: 10.1016/j.apenergy.2021.117802
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921011351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Byrne, John & Taminiau, Job & Kurdgelashvili, Lado & Kim, Kyung Nam, 2015. "A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 830-844.
    2. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Fernández-Rubiera, J.A., 2020. "Predicting beam and diffuse horizontal irradiance using Fourier expansions," Renewable Energy, Elsevier, vol. 154(C), pages 46-57.
    3. Sánchez-Pantoja, Núria & Vidal, Rosario & Pastor, M. Carmen, 2018. "Aesthetic impact of solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 227-238.
    4. Fan, Junliang & Chen, Baiquan & Wu, Lifeng & Zhang, Fucang & Lu, Xianghui & Xiang, Youzhen, 2018. "Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions," Energy, Elsevier, vol. 144(C), pages 903-914.
    5. Gernaat, David E.H.J. & de Boer, Harmen-Sytze & Dammeier, Louise C. & van Vuuren, Detlef P., 2020. "The role of residential rooftop photovoltaic in long-term energy and climate scenarios," Applied Energy, Elsevier, vol. 279(C).
    6. Tomson, Teolan, 2008. "Discrete two-positional tracking of solar collectors," Renewable Energy, Elsevier, vol. 33(3), pages 400-405.
    7. Al Garni, Hassan Z. & Awasthi, Anjali & Wright, David, 2019. "Optimal orientation angles for maximizing energy yield for solar PV in Saudi Arabia," Renewable Energy, Elsevier, vol. 133(C), pages 538-550.
    8. López-Escalante, M.C. & Navarrete-Astorga, E. & Gabás Perez, M. & Ramos- Barrado, J.R. & Martín, F., 2020. "Photovoltaic modules designed for architectural integration without negative performance consequences," Applied Energy, Elsevier, vol. 279(C).
    9. Danandeh, M.A. & Mousavi G., S.M., 2018. "Solar irradiance estimation models and optimum tilt angle approaches: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 319-330.
    10. Chen, X.M. & Li, Y. & Zhao, B.Y. & Wang, R.Z., 2020. "Are the optimum angles of photovoltaic systems so important?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    11. Amaro e Silva, R. & Brito, M.C., 2019. "Spatio-temporal PV forecasting sensitivity to modules’ tilt and orientation," Applied Energy, Elsevier, vol. 255(C).
    12. Antonanzas-Torres, F. & Urraca, R. & Polo, J. & Perpiñán-Lamigueiro, O. & Escobar, R., 2019. "Clear sky solar irradiance models: A review of seventy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 374-387.
    13. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "Determination of the optimal tilt angle and orientation for solar photovoltaic arrays," Renewable Energy, Elsevier, vol. 35(11), pages 2468-2475.
    14. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    15. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Ayuso, P. Fortuny, 2020. "Influence of solar tracking error on the performance of a small-scale linear Fresnel reflector," Renewable Energy, Elsevier, vol. 162(C), pages 43-54.
    16. Müller, Johannes & Folini, Doris & Wild, Martin & Pfenninger, Stefan, 2019. "CMIP-5 models project photovoltaics are a no-regrets investment in Europe irrespective of climate change," Energy, Elsevier, vol. 171(C), pages 135-148.
    17. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2017. "Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries," Renewable Energy, Elsevier, vol. 113(C), pages 563-579.
    18. Mithhu, Md. Mahamudul Hasan & Rima, Tahmina Ahmed & Khan, M. Ryyan, 2021. "Global analysis of optimal cleaning cycle and profit of soiling affected solar panels," Applied Energy, Elsevier, vol. 285(C).
    19. Yadav, Somil & Panda, S.K. & Hachem-Vermette, Caroline, 2020. "Method to improve performance of building integrated photovoltaic thermal system having optimum tilt and facing directions," Applied Energy, Elsevier, vol. 266(C).
    20. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    21. Mousazadeh, Hossein & Keyhani, Alireza & Javadi, Arzhang & Mobli, Hossein & Abrinia, Karen & Sharifi, Ahmad, 2009. "A review of principle and sun-tracking methods for maximizing solar systems output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1800-1818, October.
    22. Lv, Yuexia & Si, Pengfei & Rong, Xiangyang & Yan, Jinyue & Feng, Ya & Zhu, Xiaohong, 2018. "Determination of optimum tilt angle and orientation for solar collectors based on effective solar heat collection," Applied Energy, Elsevier, vol. 219(C), pages 11-19.
    23. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    24. Yang, Ying & Campana, Pietro Elia & Stridh, Bengt & Yan, Jinyue, 2020. "Potential analysis of roof-mounted solar photovoltaics in Sweden," Applied Energy, Elsevier, vol. 279(C).
    25. Salazar, Germán & Gueymard, Christian & Galdino, Janis Bezerra & de Castro Vilela, Olga & Fraidenraich, Naum, 2020. "Solar irradiance time series derived from high-quality measurements, satellite-based models, and reanalyses at a near-equatorial site in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbón, A. & Ayuso, P. Fortuny & Bayón, L. & Silva, C.A., 2021. "A comparative study between racking systems for photovoltaic power systems," Renewable Energy, Elsevier, vol. 180(C), pages 424-437.
    2. Arsenio Barbón & Luis Bayón & Guzmán Díaz & Carlos A. Silva, 2022. "Investigation of the Effect of Albedo in Photovoltaic Systems for Urban Applications: Case Study for Spain," Energies, MDPI, vol. 15(21), pages 1-20, October.
    3. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Carreira-Fontao, V., 2022. "A methodology for an optimal design of ground-mounted photovoltaic power plants," Applied Energy, Elsevier, vol. 314(C).
    4. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    5. Xu, Luting & Long, Enshen & Wei, Jincheng & Cheng, Zhu & Zheng, Hanjie, 2021. "A new approach to determine the optimum tilt angle and orientation of solar collectors in mountainous areas with high altitude," Energy, Elsevier, vol. 237(C).
    6. Barbón, A. & Carreira-Fontao, V. & Bayón, L. & Silva, C.A., 2023. "Optimal design and cost analysis of single-axis tracking photovoltaic power plants," Renewable Energy, Elsevier, vol. 211(C), pages 626-646.
    7. Singh, Rajesh & Kumar, Suresh & Gehlot, Anita & Pachauri, Rupendra, 2018. "An imperative role of sun trackers in photovoltaic technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3263-3278.
    8. Yari, Shahram & Safarzadeh, Habibollah & Bahiraei, Mehdi, 2021. "Experimental study of an absorber coil in spherical solar collector with practical dimensions at different flow rates," Renewable Energy, Elsevier, vol. 180(C), pages 1248-1259.
    9. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).
    10. Gönül, Ömer & Yazar, Fatih & Duman, A. Can & Güler, Önder, 2022. "A comparative techno-economic assessment of manually adjustable tilt mechanisms and automatic solar trackers for behind-the-meter PV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Barbón, A. & Fernández-Rubiera, J.A. & Martínez-Valledor, L. & Pérez-Fernández, A. & Bayón, L., 2021. "Design and construction of a solar tracking system for small-scale linear Fresnel reflector with three movements," Applied Energy, Elsevier, vol. 285(C).
    12. Strušnik, Dušan & Brandl, Daniel & Schober, Helmut & Ferčec, Janko & Avsec, Jurij, 2020. "A simulation model of the application of the solar STAF panel heat transfer and noise reduction with and without a transparent plate: A renewable energy review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Al Garni, Hassan Z. & Awasthi, Anjali & Wright, David, 2019. "Optimal orientation angles for maximizing energy yield for solar PV in Saudi Arabia," Renewable Energy, Elsevier, vol. 133(C), pages 538-550.
    14. Gardashov, Rauf & Eminov, Murad & Kara, Gökhan & Emecen Kara, Esma Gül & Mammadov, Tural & Huseynova, Xedce, 2020. "The optimum daily direction of solar panels in the highlands, derived by an analytical method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Hafez, A.Z. & Yousef, A.M. & Harag, N.M., 2018. "Solar tracking systems: Technologies and trackers drive types – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 754-782.
    16. Oh, Myeongchan & Kim, Jin-Young & Kim, Boyoung & Yun, Chang-Yeol & Kim, Chang Ki & Kang, Yong-Heack & Kim, Hyun-Goo, 2021. "Tolerance angle concept and formula for practical optimal orientation of photovoltaic panels," Renewable Energy, Elsevier, vol. 167(C), pages 384-394.
    17. Chen, Xie & Zhou, Chaohui & Tian, Zhiyong & Mao, Hongzhi & Luo, Yongqiang & Sun, Deyu & Fan, Jianhua & Jiang, Liguang & Deng, Jie & Rosen, Marc A., 2023. "Different photovoltaic power potential variations in East and West China," Applied Energy, Elsevier, vol. 351(C).
    18. Aslani, Mohammad & Seipel, Stefan, 2022. "Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment," Applied Energy, Elsevier, vol. 306(PA).
    19. Liu, Zhengguang & Guo, Zhiling & Chen, Qi & Song, Chenchen & Shang, Wenlong & Yuan, Meng & Zhang, Haoran, 2023. "A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives," Energy, Elsevier, vol. 263(PE).
    20. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.