IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v51y2013icp124-131.html
   My bibliography  Save this article

Evaluating tilted plane models for solar radiation using comprehensive testing procedures, at a southern hemisphere location

Author

Listed:
  • David, Mathieu
  • Lauret, Philippe
  • Boland, John

Abstract

This work aims at assessing the performances of four models for their relative merits in estimating diffuse solar radiation on tilted planes for a southern location (Reunion Island). This comparative study benefits from a sound and consistent experimental set-up and is more detailed than the previous research works as 14 inclined planes are available for testing.

Suggested Citation

  • David, Mathieu & Lauret, Philippe & Boland, John, 2013. "Evaluating tilted plane models for solar radiation using comprehensive testing procedures, at a southern hemisphere location," Renewable Energy, Elsevier, vol. 51(C), pages 124-131.
  • Handle: RePEc:eee:renene:v:51:y:2013:i:c:p:124-131
    DOI: 10.1016/j.renene.2012.08.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112005447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.08.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kambezidis, H.D. & Psiloglou, B.E. & Synodinou, B.M., 1997. "Comparison between measurements and models for daily solar irradiation on tilted surfaces in Athens, Greece," Renewable Energy, Elsevier, vol. 10(4), pages 505-518.
    2. Ridley, Barbara & Boland, John & Lauret, Philippe, 2010. "Modelling of diffuse solar fraction with multiple predictors," Renewable Energy, Elsevier, vol. 35(2), pages 478-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yadav, Amit Kumar & Chandel, S.S., 2013. "Tilt angle optimization to maximize incident solar radiation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 503-513.
    2. Hsu-Yung Cheng & Chih-Chang Yu & Kuo-Chang Hsu & Chi-Chang Chan & Mei-Hui Tseng & Chih-Lung Lin, 2019. "Estimating Solar Irradiance on Tilted Surface with Arbitrary Orientations and Tilt Angles," Energies, MDPI, vol. 12(8), pages 1-14, April.
    3. Watts, David & Valdés, Marcelo F. & Jara, Danilo & Watson, Andrea, 2015. "Potential residential PV development in Chile: The effect of Net Metering and Net Billing schemes for grid-connected PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1037-1051.
    4. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    5. Moreno, A. & Gilabert, M.A. & Camacho, F. & Martínez, B., 2013. "Validation of daily global solar irradiation images from MSG over Spain," Renewable Energy, Elsevier, vol. 60(C), pages 332-342.
    6. Jean-Laurent Duchaud & Cyril Voyant & Alexis Fouilloy & Gilles Notton & Marie-Laure Nivet, 2020. "Trade-Off between Precision and Resolution of a Solar Power Forecasting Algorithm for Micro-Grid Optimal Control," Energies, MDPI, vol. 13(14), pages 1-16, July.
    7. Haghdadi, Navid & Copper, Jessie & Bruce, Anna & MacGill, Iain, 2017. "A method to estimate the location and orientation of distributed photovoltaic systems from their generation output data," Renewable Energy, Elsevier, vol. 108(C), pages 390-400.
    8. Voyant, Cyril & Notton, Gilles & Duchaud, Jean-Laurent & Gutiérrez, Luis Antonio García & Bright, Jamie M. & Yang, Dazhi, 2022. "Benchmarks for solar radiation time series forecasting," Renewable Energy, Elsevier, vol. 191(C), pages 747-762.
    9. Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
    10. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    11. Copper, J.K. & Sproul, A.B. & Jarnason, S., 2016. "Photovoltaic (PV) performance modelling in the absence of onsite measured plane of array irradiance (POA) and module temperature," Renewable Energy, Elsevier, vol. 86(C), pages 760-769.
    12. Raptis, P.I. & Kazadzis, S. & Psiloglou, B. & Kouremeti, N. & Kosmopoulos, P. & Kazantzidis, A., 2017. "Measurements and model simulations of solar radiation at tilted planes, towards the maximization of energy capture," Energy, Elsevier, vol. 130(C), pages 570-580.
    13. Moretón, R. & Lorenzo, E. & Pinto, A. & Muñoz, J. & Narvarte, L., 2017. "From broadband horizontal to effective in-plane irradiation: A review of modelling and derived uncertainty for PV yield prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 886-903.
    14. Ioannis-Panagiotis Raptis & Anna Moustaka & Panagiotis Kosmopoulos & Stelios Kazadzis, 2022. "Selecting Surface Inclination for Maximum Solar Power," Energies, MDPI, vol. 15(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    2. Bertrand, Cédric & Vanderveken, Gilles & Journée, Michel, 2015. "Evaluation of decomposition models of various complexity to estimate the direct solar irradiance over Belgium," Renewable Energy, Elsevier, vol. 74(C), pages 618-626.
    3. Schinke-Nendza, A. & von Loeper, F. & Osinski, P. & Schaumann, P. & Schmidt, V. & Weber, C., 2021. "Probabilistic forecasting of photovoltaic power supply — A hybrid approach using D-vine copulas to model spatial dependencies," Applied Energy, Elsevier, vol. 304(C).
    4. Abhnil Amtesh Prasad & Merlinde Kay, 2020. "Assessment of Simulated Solar Irradiance on Days of High Intermittency Using WRF-Solar," Energies, MDPI, vol. 13(2), pages 1-22, January.
    5. Copper, J.K. & Sproul, A.B., 2013. "Comparative building simulation study utilising measured and estimated solar irradiance for Australian locations," Renewable Energy, Elsevier, vol. 53(C), pages 86-93.
    6. Jentsch, Mark F. & James, Patrick A.B. & Bourikas, Leonidas & Bahaj, AbuBakr S., 2013. "Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates," Renewable Energy, Elsevier, vol. 55(C), pages 514-524.
    7. Mayer, Martin János & Yang, Dazhi, 2023. "Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Deo, Ravinesh C. & Şahin, Mehmet, 2017. "Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 828-848.
    9. Boland, John & Huang, Jing & Ridley, Barbara, 2013. "Decomposing global solar radiation into its direct and diffuse components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 749-756.
    10. Copper, J.K. & Sproul, A.B., 2012. "Comparative study of mathematical models in estimating solar irradiance for Australia," Renewable Energy, Elsevier, vol. 43(C), pages 130-139.
    11. Li, Huashan & Ma, Weibin & Wang, Xianlong & Lian, Yongwang, 2011. "Estimating monthly average daily diffuse solar radiation with multiple predictors: A case study," Renewable Energy, Elsevier, vol. 36(7), pages 1944-1948.
    12. Yang, Dazhi, 2022. "Estimating 1-min beam and diffuse irradiance from the global irradiance: A review and an extensive worldwide comparison of latest separation models at 126 stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Kuo, Chia-Wei & Chang, Wen-Chey & Chang, Keh-Chin, 2014. "Modeling the hourly solar diffuse fraction in Taiwan," Renewable Energy, Elsevier, vol. 66(C), pages 56-61.
    14. Lauret, Philippe & Boland, John & Ridley, Barbara, 2013. "Bayesian statistical analysis applied to solar radiation modelling," Renewable Energy, Elsevier, vol. 49(C), pages 124-127.
    15. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    16. Deo, Ravinesh C. & Wen, Xiaohu & Qi, Feng, 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset," Applied Energy, Elsevier, vol. 168(C), pages 568-593.
    17. Pérez-Burgos, Ana & Román, Roberto & Bilbao, Julia & de Miguel, Argimiro & Oteiza, Pilar, 2015. "Reconstruction of long-term direct solar irradiance data series using a model based on the Cloud Modification Factor," Renewable Energy, Elsevier, vol. 77(C), pages 115-124.
    18. Chen, Rensheng & Kang, Ersi & Ji, Xibin & Yang, Jianping & Wang, Junhai, 2007. "An hourly solar radiation model under actual weather and terrain conditions: A case study in Heihe river basin," Energy, Elsevier, vol. 32(7), pages 1148-1157.
    19. Pfenninger, Stefan, 2017. "Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability," Applied Energy, Elsevier, vol. 197(C), pages 1-13.
    20. Haghdadi, Navid & Copper, Jessie & Bruce, Anna & MacGill, Iain, 2017. "A method to estimate the location and orientation of distributed photovoltaic systems from their generation output data," Renewable Energy, Elsevier, vol. 108(C), pages 390-400.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:51:y:2013:i:c:p:124-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.