IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp347-356.html
   My bibliography  Save this article

CIE Standard Sky classification by accessible climatic indices

Author

Listed:
  • Lou, Siwei
  • Li, Danny H.W.
  • Lam, Joseph C.

Abstract

Solar irradiance and daylight illuminance are essential for solar energy and daylighting designs. Recently, the International Commission of Illuminance (CIE) adopted 15 Standard Skies to represent the possible sky-diffuse luminance and radiance distributions. Such distributions would improve the solar irradiance and daylight illuminance estimations for the building envelope and photovoltaic panels in any directions. The important issue is whether the sky conditions could be correctly identified by the available variables. Previously, many climatic parameters including sky luminance distributions, vertical diffuse irradiance and illuminance were proposed for identifying sky conditions. However, such data may not always be available from the routine measurements of a weather station. This paper proposes an approach to interpreting the sky conditions using the variables that are readily accessible from meteorological stations for many years. The approach appropriately identified 83.2% of the 3 typical overcast, partly cloudy and clear skies, and further 62.7% of the 15 individual CIE Standard Skies for Hong Kong. The %RMSE of the vertical solar irradiance and daylight illuminance estimated by the approach was found less than 23%. The results show that the proposed approach would be reliable for sky classification.

Suggested Citation

  • Lou, Siwei & Li, Danny H.W. & Lam, Joseph C., 2017. "CIE Standard Sky classification by accessible climatic indices," Renewable Energy, Elsevier, vol. 113(C), pages 347-356.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:347-356
    DOI: 10.1016/j.renene.2017.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117305141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Danny H.W. & Lou, Siwei & Lam, Joseph C. & Wu, Ronald H.T., 2016. "Determining solar irradiance on inclined planes from classified CIE (International Commission on Illumination) standard skies," Energy, Elsevier, vol. 101(C), pages 462-470.
    2. Lima, Francisco J.L. & Martins, Fernando R. & Pereira, Enio B. & Lorenz, Elke & Heinemann, Detlev, 2016. "Forecast for surface solar irradiance at the Brazilian Northeastern region using NWP model and artificial neural networks," Renewable Energy, Elsevier, vol. 87(P1), pages 807-818.
    3. Kittler, R. & Darula, S., 2002. "Parametric definition of the daylight climate," Renewable Energy, Elsevier, vol. 26(2), pages 177-187.
    4. Lou, Siwei & Li, Danny H.W. & Lam, Joseph C. & Chan, Wilco W.H., 2016. "Prediction of diffuse solar irradiance using machine learning and multivariable regression," Applied Energy, Elsevier, vol. 181(C), pages 367-374.
    5. Li, Danny H.W & Lam, Joseph C, 2000. "Measurements of solar radiation and illuminance on vertical surfaces and daylighting implications," Renewable Energy, Elsevier, vol. 20(4), pages 389-404.
    6. Li, Danny H.W. & Lam, Joseph C. & Lau, Chris C.S., 2002. "A new approach for predicting vertical global solar irradiance," Renewable Energy, Elsevier, vol. 25(4), pages 591-606.
    7. Li, Danny H.W. & Cheung, K.L. & Wong, S.L. & Lam, Tony N.T., 2010. "An analysis of energy-efficient light fittings and lighting controls," Applied Energy, Elsevier, vol. 87(2), pages 558-567, February.
    8. Li, Danny H.W. & Chau, T.C. & Wan, Kevin K.W., 2014. "A review of the CIE general sky classification approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 563-574.
    9. מחקר - ביטוח לאומי, 2006. "Summary for 2005," Working Papers 29, National Insurance Institute of Israel.
    10. Appelbaum, J., 2016. "Bifacial photovoltaic panels field," Renewable Energy, Elsevier, vol. 85(C), pages 338-343.
    11. Ridley, Barbara & Boland, John & Lauret, Philippe, 2010. "Modelling of diffuse solar fraction with multiple predictors," Renewable Energy, Elsevier, vol. 35(2), pages 478-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lou, Siwei & Huang, Yu & Li, Danny H.W. & Xia, Dawei & Zhou, Xiaoqing & Zhao, Yang, 2020. "A novel method for fast sky conditions identification from global solar radiation measurements," Renewable Energy, Elsevier, vol. 161(C), pages 77-90.
    2. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    3. Lou, Siwei & Li, Danny.H.W. & Chen, Wenqiang, 2019. "Identifying overcast, partly cloudy and clear skies by illuminance fluctuations," Renewable Energy, Elsevier, vol. 138(C), pages 198-211.
    4. Lou, Siwei & Li, Danny H.W. & Alshaibani, Khalid A. & Xing, Haowei & Li, Zhengrong & Huang, Yu & Xia, Dawei, 2022. "An all-sky luminance and radiance distribution model for built environment studies," Renewable Energy, Elsevier, vol. 190(C), pages 822-835.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    2. Lou, Siwei & Huang, Yu & Li, Danny H.W. & Xia, Dawei & Zhou, Xiaoqing & Zhao, Yang, 2020. "A novel method for fast sky conditions identification from global solar radiation measurements," Renewable Energy, Elsevier, vol. 161(C), pages 77-90.
    3. Li, Danny H.W. & Lou, Siwei & Lam, Joseph C. & Wu, Ronald H.T., 2016. "Determining solar irradiance on inclined planes from classified CIE (International Commission on Illumination) standard skies," Energy, Elsevier, vol. 101(C), pages 462-470.
    4. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    5. Salcedo-Sanz, Sancho & Deo, Ravinesh C. & Cornejo-Bueno, Laura & Camacho-Gómez, Carlos & Ghimire, Sujan, 2018. "An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia," Applied Energy, Elsevier, vol. 209(C), pages 79-94.
    6. Orehounig, Kristina & Dervishi, Sokol & Mahdavi, Ardeshir, 2014. "Computational derivation of irradiance on building surfaces: An empirically-based model comparison," Renewable Energy, Elsevier, vol. 71(C), pages 185-192.
    7. Liu, Peirong & Tong, Xiaojuan & Zhang, Jinsong & Meng, Ping & Li, Jun & Zhang, Jingru, 2020. "Estimation of half-hourly diffuse solar radiation over a mixed plantation in north China," Renewable Energy, Elsevier, vol. 149(C), pages 1360-1369.
    8. Li, Danny H.W. & Chau, Natalie T.C. & Wan, Kevin K.W., 2013. "Predicting daylight illuminance and solar irradiance on vertical surfaces based on classified standard skies," Energy, Elsevier, vol. 53(C), pages 252-258.
    9. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.
    10. Chen, Ji-Long & He, Lei & Chen, Qiao & Lv, Ming-Quan & Zhu, Hong-Lin & Wen, Zhao-Fei & Wu, Sheng-Jun, 2019. "Study of monthly mean daily diffuse and direct beam radiation estimation with MODIS atmospheric product," Renewable Energy, Elsevier, vol. 132(C), pages 221-232.
    11. Lou, Siwei & Li, Danny H.W. & Lam, Joseph C. & Chan, Wilco W.H., 2016. "Prediction of diffuse solar irradiance using machine learning and multivariable regression," Applied Energy, Elsevier, vol. 181(C), pages 367-374.
    12. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    13. Bhalotra, Sonia & Clarke, Damian & Mühlrad, Hanna & Palme, Mårten, 2021. "Health and Labor Market Impacts of Twin Birth : Evidence from a Swedish IVF Policy Mandate," The Warwick Economics Research Paper Series (TWERPS) 1391, University of Warwick, Department of Economics.
    14. N. N., 2005. "60th Euroconstruct Conference: The Prospects for the European Construction Market 2006-2008. Summary Report," WIFO Studies, WIFO, number 25838, February.
    15. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    16. Lei Jin & Nicholas Chrisatakis, 2009. "Investigating the mechanism of marital mortality reduction: The transition to widowhood and quality of health care," Demography, Springer;Population Association of America (PAA), vol. 46(3), pages 605-625, August.
    17. Ankit Gupta & Hemant Bherwani & Sneha Gautam & Saima Anjum & Kavya Musugu & Narendra Kumar & Avneesh Anshul & Rakesh Kumar, 2021. "Air pollution aggravating COVID-19 lethality? Exploration in Asian cities using statistical models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6408-6417, April.
    18. Bureau for Food and Agricultural Policy, 2015. "The South African Sunflower Complex," BFAP Reports 279776, Bureau for Food and Agricultural Policy (BFAP), BFAP Reports.
    19. Hristovska, Tatjana & Watkins, K. Bradley & Anders, Merle M., 2012. "An Economic Risk Analysis of No-till Management for the Rice-Soybean Rotation System used in Arkansas," 2012 Annual Meeting, February 4-7, 2012, Birmingham, Alabama 119676, Southern Agricultural Economics Association.
    20. Nicholas W Calderone, 2012. "Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:347-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.