Forecast for surface solar irradiance at the Brazilian Northeastern region using NWP model and artificial neural networks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2015.11.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Martins, Fernando Ramos & Pereira, Enio Bueno, 2011. "Enhancing information for solar and wind energy technology deployment in Brazil," Energy Policy, Elsevier, vol. 39(7), pages 4378-4390, July.
- Martins, F.R. & Rüther, R. & Pereira, E.B. & Abreu, S.L., 2008. "Solar energy scenarios in Brazil. Part two: Photovoltaics applications," Energy Policy, Elsevier, vol. 36(8), pages 2855-2867, August.
- Linares-Rodríguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vázquez, David & Tovar-Pescador, Joaquín, 2011. "Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks," Energy, Elsevier, vol. 36(8), pages 5356-5365.
- Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
- Linares-Rodriguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vazquez, David & Tovar-Pescador, Joaquin, 2013. "An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images," Energy, Elsevier, vol. 61(C), pages 636-645.
- Dos Santos, Cícero Manoel & De Souza, José Leonaldo & Ferreira Junior, Ricardo Araujo & Tiba, Chigueru & de Melo, Rinaldo Oliveira & Lyra, Gustavo Bastos & Teodoro, Iêdo & Lyra, Guilherme Bastos & Lem, 2014. "On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil," Energy, Elsevier, vol. 71(C), pages 388-398.
- Martins, F.R. & Pereira, E.B. & Silva, S.A.B. & Abreu, S.L. & Colle, Sergio, 2008. "Solar energy scenarios in Brazil, Part one: Resource assessment," Energy Policy, Elsevier, vol. 36(8), pages 2843-2854, August.
- Tiba, Chigueru, 2001. "Solar radiation in the Brazilian Northeast," Renewable Energy, Elsevier, vol. 22(4), pages 565-578.
- Martins, F.R. & Abreu, S.L. & Pereira, E.B., 2012. "Scenarios for solar thermal energy applications in Brazil," Energy Policy, Elsevier, vol. 48(C), pages 640-649.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yeji Lee & Doosung Choi & Yongho Jung & Myeongjin Ko, 2022. "Application of Technology to Develop a Framework for Predicting Power Output of a PV System Based on a Spatial Interpolation Technique: A Case Study in South Korea," Energies, MDPI, vol. 15(22), pages 1-22, November.
- Michael, Neethu Elizabeth & Bansal, Ramesh C. & Ismail, Ali Ahmed Adam & Elnady, A. & Hasan, Shazia, 2024. "A cohesive structure of Bi-directional long-short-term memory (BiLSTM) -GRU for predicting hourly solar radiation," Renewable Energy, Elsevier, vol. 222(C).
- Sun, Jingbo & Wang, Yang & He, Yuan & Cui, Wenrui & Chao, Qingchen & Shan, Baoguo & Wang, Zheng & Yang, Xiaofan, 2024. "The energy security risk assessment of inefficient wind and solar resources under carbon neutrality in China," Applied Energy, Elsevier, vol. 360(C).
- Muhammad Naveed Akhter & Saad Mekhilef & Hazlie Mokhlis & Ziyad M. Almohaimeed & Munir Azam Muhammad & Anis Salwa Mohd Khairuddin & Rizwan Akram & Muhammad Majid Hussain, 2022. "An Hour-Ahead PV Power Forecasting Method Based on an RNN-LSTM Model for Three Different PV Plants," Energies, MDPI, vol. 15(6), pages 1-21, March.
- Wang, Lining & Mao, Mingxuan & Xie, Jili & Liao, Zheng & Zhang, Hao & Li, Huanxin, 2023. "Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model," Energy, Elsevier, vol. 262(PB).
- Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Zhang, Jun & Shi, Junsheng & Gao, Bixuan & Liu, Wuming, 2021. "Hybrid deep neural model for hourly solar irradiance forecasting," Renewable Energy, Elsevier, vol. 171(C), pages 1041-1060.
- Sward, J.A. & Ault, T.R. & Zhang, K.M., 2022. "Genetic algorithm selection of the weather research and forecasting model physics to support wind and solar energy integration," Energy, Elsevier, vol. 254(PB).
- Salcedo-Sanz, Sancho & Deo, Ravinesh C. & Cornejo-Bueno, Laura & Camacho-Gómez, Carlos & Ghimire, Sujan, 2018. "An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia," Applied Energy, Elsevier, vol. 209(C), pages 79-94.
- Zhou, Kaile & Chu, Yibo & Hu, Rong, 2023. "Energy supply-demand interaction model integrating uncertainty forecasting and peer-to-peer energy trading," Energy, Elsevier, vol. 285(C).
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Chu, Yinghao & Wang, Yiling & Yang, Dazhi & Chen, Shanlin & Li, Mengying, 2024. "A review of distributed solar forecasting with remote sensing and deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
- Bikhtiyar Ameen & Heiko Balzter & Claire Jarvis & James Wheeler, 2019. "Modelling Hourly Global Horizontal Irradiance from Satellite-Derived Datasets and Climate Variables as New Inputs with Artificial Neural Networks," Energies, MDPI, vol. 12(1), pages 1-28, January.
- Dou, Weijing & Wang, Kai & Shan, Shuo & Li, Chenxi & Wang, Yiye & Zhang, Kanjian & Wei, Haikun & Sreeram, Victor, 2024. "Day-ahead Numerical Weather Prediction solar irradiance correction using a clustering method based on weather conditions," Applied Energy, Elsevier, vol. 365(C).
- Moreira, M.O. & Balestrassi, P.P. & Paiva, A.P. & Ribeiro, P.F. & Bonatto, B.D., 2021. "Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Dash, Deepak Ranjan & Dash, P.K. & Bisoi, Ranjeeta, 2021. "Short term solar power forecasting using hybrid minimum variance expanded RVFLN and Sine-Cosine Levy Flight PSO algorithm," Renewable Energy, Elsevier, vol. 174(C), pages 513-537.
- Cervone, Guido & Clemente-Harding, Laura & Alessandrini, Stefano & Delle Monache, Luca, 2017. "Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble," Renewable Energy, Elsevier, vol. 108(C), pages 274-286.
- Lou, Siwei & Li, Danny H.W. & Lam, Joseph C., 2017. "CIE Standard Sky classification by accessible climatic indices," Renewable Energy, Elsevier, vol. 113(C), pages 347-356.
- Rohani, Abbas & Taki, Morteza & Abdollahpour, Masoumeh, 2018. "A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I)," Renewable Energy, Elsevier, vol. 115(C), pages 411-422.
- Hoyos-Gómez, Laura S. & Ruiz-Muñoz, Jose F. & Ruiz-Mendoza, Belizza J., 2022. "Short-term forecasting of global solar irradiance in tropical environments with incomplete data," Applied Energy, Elsevier, vol. 307(C).
- Wang, Jianzhou & Dong, Yunxuan & Zhang, Kequan & Guo, Zhenhai, 2017. "A numerical model based on prior distribution fuzzy inference and neural networks," Renewable Energy, Elsevier, vol. 112(C), pages 486-497.
- Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Malagueta, Diego & Szklo, Alexandre & Borba, Bruno Soares Moreira Cesar & Soria, Rafael & Aragão, Raymundo & Schaeffer, Roberto & Dutra, Ricardo, 2013. "Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system," Energy Policy, Elsevier, vol. 59(C), pages 198-212.
- Martins, F.R. & Abreu, S.L. & Pereira, E.B., 2012. "Scenarios for solar thermal energy applications in Brazil," Energy Policy, Elsevier, vol. 48(C), pages 640-649.
- Costa, Rodrigo Santos & Martins, Fernando Ramos & Pereira, Enio Bueno, 2016. "Atmospheric aerosol influence on the Brazilian solar energy assessment: Experiments with different horizontal visibility bases in radiative transfer model," Renewable Energy, Elsevier, vol. 90(C), pages 120-135.
- Malagueta, Diego & Szklo, Alexandre & Soria, Rafael & Dutra, Ricardo & Schaeffer, Roberto & Moreira Cesar Borba, Bruno Soares, 2014. "Potential and impacts of Concentrated Solar Power (CSP) integration in the Brazilian electric power system," Renewable Energy, Elsevier, vol. 68(C), pages 223-235.
- Marcus Vinícius Coelho Vieira da Costa & Osmar Luiz Ferreira de Carvalho & Alex Gois Orlandi & Issao Hirata & Anesmar Olino de Albuquerque & Felipe Vilarinho e Silva & Renato Fontes Guimarães & Robert, 2021. "Remote Sensing for Monitoring Photovoltaic Solar Plants in Brazil Using Deep Semantic Segmentation," Energies, MDPI, vol. 14(10), pages 1-15, May.
- Corrêa da Silva, Rodrigo & de Marchi Neto, Ismael & Silva Seifert, Stephan, 2016. "Electricity supply security and the future role of renewable energy sources in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 328-341.
- Bessa, Vanessa M.T. & Prado, Racine T.A., 2015. "Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing," Energy Policy, Elsevier, vol. 83(C), pages 138-150.
- Portolan dos Santos, Ísis & Rüther, Ricardo, 2014. "Limitations in solar module azimuth and tilt angles in building integrated photovoltaics at low latitude tropical sites in Brazil," Renewable Energy, Elsevier, vol. 63(C), pages 116-124.
- Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2014. "Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 509-519.
- Kashyap, Yashwant & Bansal, Ankit & Sao, Anil K., 2015. "Solar radiation forecasting with multiple parameters neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 825-835.
- Silva, Tatiane C. & Pinto, Gabriel M. & de Souza, Túlio A.Z. & Valerio, Victor & Silvério, Naidion M. & Coronado, Christian J.R. & Guardia, Eduardo Crestana, 2020. "Technical and economical evaluation of the photovoltaic system in Brazilian public buildings: A case study for peak and off-peak hours," Energy, Elsevier, vol. 190(C).
- Silva, S.B. & Severino, M.M. & de Oliveira, M.A.G., 2013. "A stand-alone hybrid photovoltaic, fuel cell and battery system: A case study of Tocantins, Brazil," Renewable Energy, Elsevier, vol. 57(C), pages 384-389.
- Silva, Sergio B. & de Oliveira, Marco A.G. & Severino, Mauro M., 2010. "Economic evaluation and optimization of a photovoltaic-fuel cell-batteries hybrid system for use in the Brazilian Amazon," Energy Policy, Elsevier, vol. 38(11), pages 6713-6723, November.
- Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2015. "Review and statistical analysis of different global solar radiation sunshine models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1869-1880.
- Linares-Rodriguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vazquez, David & Tovar-Pescador, Joaquin, 2013. "An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images," Energy, Elsevier, vol. 61(C), pages 636-645.
- Lemos, Leonardo F.L. & Starke, Allan R. & Boland, John & Cardemil, José M. & Machado, Rubinei D. & Colle, Sergio, 2017. "Assessment of solar radiation components in Brazil using the BRL model," Renewable Energy, Elsevier, vol. 108(C), pages 569-580.
- Benali, L. & Notton, G. & Fouilloy, A. & Voyant, C. & Dizene, R., 2019. "Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components," Renewable Energy, Elsevier, vol. 132(C), pages 871-884.
- Chen, Hsing Hung & Kang, He-Yau & Lee, Amy H.I., 2010. "Strategic selection of suitable projects for hybrid solar-wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 413-421, January.
- Koussa, Mustapha & Saheb-Koussa, Djohra & Hadji, Seddik, 2017. "Experimental investigation of simple solar radiation spectral model performances under a Mediterranean Algerian's climate," Energy, Elsevier, vol. 120(C), pages 751-773.
- Linares-Rodriguez, Alvaro & Quesada-Ruiz, Samuel & Pozo-Vazquez, David & Tovar-Pescador, Joaquin, 2015. "An evolutionary artificial neural network ensemble model for estimating hourly direct normal irradiances from meteosat imagery," Energy, Elsevier, vol. 91(C), pages 264-273.
More about this item
Keywords
Solar energy forecast; Artificial neural network; WRF model; Solar irradiance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:807-818. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.