IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v59y2013icp198-212.html
   My bibliography  Save this article

Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system

Author

Listed:
  • Malagueta, Diego
  • Szklo, Alexandre
  • Borba, Bruno Soares Moreira Cesar
  • Soria, Rafael
  • Aragão, Raymundo
  • Schaeffer, Roberto
  • Dutra, Ricardo

Abstract

This study assesses the impacts of promoting, through auctions, centralized solar power generation (concentrated solar power – CSP, and photovoltaic solar panels – PV) on the Brazilian power system. Four types of CSP plants with parabolic troughs were simulated at two sites, Bom Jesus da Lapa and Campo Grande, and PV plants were simulated at two other sites, Recife and Rio de Janeiro. The main parameters obtained for each plant were expanded to other suitable sites in the country (totaling 17.2GW in 2040), as inputs in an optimization model for evaluating the impacts of the introduction of centralized solar power on the expansion of the electricity grid up to 2040. This scenario would be about USD$ 185 billion more expensive than a business as usual scenario, where expansion solely relies on least-cost options. Hence, for the country to incentivize the expansion of centralized solar power, specific auctions for solar energy should be adopted, as well as complementary policies to promote investments in R&D and the use of hybrid systems based on solar and fuels in CSP plants.

Suggested Citation

  • Malagueta, Diego & Szklo, Alexandre & Borba, Bruno Soares Moreira Cesar & Soria, Rafael & Aragão, Raymundo & Schaeffer, Roberto & Dutra, Ricardo, 2013. "Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system," Energy Policy, Elsevier, vol. 59(C), pages 198-212.
  • Handle: RePEc:eee:enepol:v:59:y:2013:i:c:p:198-212
    DOI: 10.1016/j.enpol.2013.03.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513001833
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.03.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moreno, R. & Barroso, L.A. & Rudnick, H. & Mocarquer, S. & Bezerra, B., 2010. "Auction approaches of long-term contracts to ensure generation investment in electricity markets: Lessons from the Brazilian and Chilean experiences," Energy Policy, Elsevier, vol. 38(10), pages 5758-5769, October.
    2. Taylor, Margaret, 2008. "Beyond technology-push and demand-pull: Lessons from California's solar policy," Energy Economics, Elsevier, vol. 30(6), pages 2829-2854, November.
    3. Solangi, K.H. & Islam, M.R. & Saidur, R. & Rahim, N.A. & Fayaz, H., 2011. "A review on global solar energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2149-2163, May.
    4. Fthenakis, Vasilis & Mason, James E. & Zweibel, Ken, 2009. "The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US," Energy Policy, Elsevier, vol. 37(2), pages 387-399, February.
    5. Viebahn, Peter & Lechon, Yolanda & Trieb, Franz, 2011. "The potential role of concentrated solar power (CSP) in Africa and Europe--A dynamic assessment of technology development, cost development and life cycle inventories until 2050," Energy Policy, Elsevier, vol. 39(8), pages 4420-4430, August.
    6. Hirsh, Richard F., 1999. "PURPA: The Spur to Competition and Utility Restructuring," The Electricity Journal, Elsevier, vol. 12(7), pages 60-72, August.
    7. Mitscher, Martin & Rüther, Ricardo, 2012. "Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil," Energy Policy, Elsevier, vol. 49(C), pages 688-694.
    8. Szklo, Alexandre Salem & Soares, Jeferson Borghetti & Tolmasquim, Mauricio Tiomno, 2004. "Economic potential of natural gas-fired cogeneration--analysis of Brazil's chemical industry," Energy Policy, Elsevier, vol. 32(12), pages 1415-1428, August.
    9. Martins, F.R. & Pereira, E.B. & Silva, S.A.B. & Abreu, S.L. & Colle, Sergio, 2008. "Solar energy scenarios in Brazil, Part one: Resource assessment," Energy Policy, Elsevier, vol. 36(8), pages 2843-2854, August.
    10. Hang, Qu & Jun, Zhao & Xiao, Yu & Junkui, Cui, 2008. "Prospect of concentrating solar power in China--the sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2505-2514, December.
    11. Braun, Frauke G. & Hooper, Elizabeth & Wand, Robert & Zloczysti, Petra, 2011. "Holding a candle to innovation in concentrating solar power technologies: A study drawing on patent data," Energy Policy, Elsevier, vol. 39(5), pages 2441-2456, May.
    12. Wiser, Ryan & Barbose, Galen & Holt, Edward, 2011. "Supporting solar power in renewables portfolio standards: Experience from the United States," Energy Policy, Elsevier, vol. 39(7), pages 3894-3905, July.
    13. Li, Jun, 2009. "Scaling up concentrating solar thermal technology in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2051-2060, October.
    14. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    15. Rüther, Ricardo & Zilles, Roberto, 2011. "Making the case for grid-connected photovoltaics in Brazil," Energy Policy, Elsevier, vol. 39(3), pages 1027-1030, March.
    16. Rego, Erik Eduardo & Parente, Virginia, 2013. "Brazilian experience in electricity auctions: Comparing outcomes from new and old energy auctions as well as the application of the hybrid Anglo-Dutch design," Energy Policy, Elsevier, vol. 55(C), pages 511-520.
    17. Montes, M.J. & Rovira, A. & Muñoz, M. & Martínez-Val, J.M., 2011. "Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors," Applied Energy, Elsevier, vol. 88(9), pages 3228-3238.
    18. Martins, Fernando Ramos & Pereira, Enio Bueno, 2011. "Enhancing information for solar and wind energy technology deployment in Brazil," Energy Policy, Elsevier, vol. 39(7), pages 4378-4390, July.
    19. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    20. Poullikkas, Andreas, 2009. "Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region--A case study for the island of Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2474-2484, December.
    21. Martins, F.R. & Rüther, R. & Pereira, E.B. & Abreu, S.L., 2008. "Solar energy scenarios in Brazil. Part two: Photovoltaics applications," Energy Policy, Elsevier, vol. 36(8), pages 2855-2867, August.
    22. Clifton, Julian & Boruff, Bryan J., 2010. "Assessing the potential for concentrated solar power development in rural Australia," Energy Policy, Elsevier, vol. 38(9), pages 5272-5280, September.
    23. Purohit, Ishan & Purohit, Pallav, 2010. "Techno-economic evaluation of concentrating solar power generation in India," Energy Policy, Elsevier, vol. 38(6), pages 3015-3029, June.
    24. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    25. Chade Ricosti, Juliana F. & Sauer, Ildo L., 2013. "An assessment of wind power prospects in the Brazilian hydrothermal system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 742-753.
    26. Larraín, Teresita & Escobar, Rodrigo & Vergara, Julio, 2010. "Performance model to assist solar thermal power plant siting in northern Chile based on backup fuel consumption," Renewable Energy, Elsevier, vol. 35(8), pages 1632-1643.
    27. Fluri, Thomas P., 2009. "The potential of concentrating solar power in South Africa," Energy Policy, Elsevier, vol. 37(12), pages 5075-5080, December.
    28. Martins, F.R. & Abreu, S.L. & Pereira, E.B., 2012. "Scenarios for solar thermal energy applications in Brazil," Energy Policy, Elsevier, vol. 48(C), pages 640-649.
    29. Wang, Zhifeng, 2010. "Prospectives for China's solar thermal power technology development," Energy, Elsevier, vol. 35(11), pages 4417-4420.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juárez-Luna, David & Urdiales, Eduardo, 2021. "Participación de la capacidad fotovoltaica instalada en México: un análisis benchmarking [Share of installed photovoltaic capacity in Mexico: a benchmarking analysis]," MPRA Paper 114589, University Library of Munich, Germany.
    2. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    3. R. Schaeffer & A. Köberle & H. L. Soest & C. Bertram & G. Luderer & K. Riahi & V. Krey & D. P. Vuuren & E. Kriegler & S. Fujimori & W. Chen & C. He & Z. Vrontisi & S. Vishwanathan & A. Garg & R. Mathu, 2020. "Comparing transformation pathways across major economies," Climatic Change, Springer, vol. 162(4), pages 1787-1803, October.
    4. Ugochukwu Kenechi Elinwa & Mehrshad Radmehr & John Emmanuel Ogbeba, 2017. "Alternative Energy Solutions Using BIPV in Apartment Buildings of Developing Countries: A Case Study of North Cyprus," Sustainability, MDPI, vol. 9(8), pages 1-14, August.
    5. Goldemberg, José & Schaeffer, Roberto & Szklo, Alexandre & Lucchesi, Rodrigo, 2014. "Oil and natural gas prospects in South America: Can the petroleum industry pave the way for renewables in Brazil?," Energy Policy, Elsevier, vol. 64(C), pages 58-70.
    6. Soria, Rafael & Portugal-Pereira, Joana & Szklo, Alexandre & Milani, Rodrigo & Schaeffer, Roberto, 2015. "Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil," Energy Policy, Elsevier, vol. 86(C), pages 57-72.
    7. Martín, Helena & de la Hoz, Jordi & Velasco, Guillermo & Castilla, Miguel & García de Vicuña, José Luís, 2015. "Promotion of concentrating solar thermal power (CSP) in Spain: Performance analysis of the period 1998–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1052-1068.
    8. Miranda, Raul & Simoes, Sofia & Szklo, Alexandre & Schaeffer, Roberto, 2019. "Adding detailed transmission constraints to a long-term integrated assessment model – A case study for Brazil using the TIMES model," Energy, Elsevier, vol. 167(C), pages 791-803.
    9. Simsek, Yeliz & Mata-Torres, Carlos & Guzmán, Amador M. & Cardemil, Jose M. & Escobar, Rodrigo, 2018. "Sensitivity and effectiveness analysis of incentives for concentrated solar power projects in Chile," Renewable Energy, Elsevier, vol. 129(PA), pages 214-224.
    10. Gutiérrez-Alvarez, R. & Guerra, K. & Haro, P., 2023. "Market profitability of CSP-biomass hybrid power plants: Towards a firm supply of renewable energy," Applied Energy, Elsevier, vol. 335(C).
    11. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
    12. Martin, Nigel & Rice, John, 2015. "Improving Australia's renewable energy project policy and planning: A multiple stakeholder analysis," Energy Policy, Elsevier, vol. 84(C), pages 128-141.
    13. Diniz, Tiago B. & Caiado Couto, Lilia, 2024. "Achieving a high share of non-hydro renewable integration in Brazil through wind power: Regional growth and employment effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    14. Soria, Rafael & Lucena, André F.P. & Tomaschek, Jan & Fichter, Tobias & Haasz, Thomas & Szklo, Alexandre & Schaeffer, Roberto & Rochedo, Pedro & Fahl, Ulrich & Kern, Jürgen, 2016. "Modelling concentrated solar power (CSP) in the Brazilian energy system: A soft-linked model coupling approach," Energy, Elsevier, vol. 116(P1), pages 265-280.
    15. Zhou, Dequn & Chong, Zhaotian & Wang, Qunwei, 2020. "What is the future policy for photovoltaic power applications in China? Lessons from the past," Resources Policy, Elsevier, vol. 65(C).
    16. Barbosa, Juliana & Dias, Luís P. & Simoes, Sofia G. & Seixas, Júlia, 2020. "When is the sun going to shine for the Brazilian energy sector? A story of how modelling affects solar electricity," Renewable Energy, Elsevier, vol. 162(C), pages 1684-1702.
    17. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    18. Xiaoru Zhuang & Xinhai Xu & Wenrui Liu & Wenfu Xu, 2019. "LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China," Energies, MDPI, vol. 12(7), pages 1-17, April.
    19. Radmehr, Mehrshad & Willis, Ken & Kenechi, Ugo Elinwa, 2014. "A framework for evaluating WTP for BIPV in residential housing design in developing countries: A case study of North Cyprus," Energy Policy, Elsevier, vol. 70(C), pages 207-216.
    20. Perpiña Castillo, Carolina & Batista e Silva, Filipe & Lavalle, Carlo, 2016. "An assessment of the regional potential for solar power generation in EU-28," Energy Policy, Elsevier, vol. 88(C), pages 86-99.
    21. Pahle, Michael & Schaeffer, Roberto & Pachauri, Shonali & Eom, Jiyong & Awasthy, Aayushi & Chen, Wenying & Di Maria, Corrado & Jiang, Kejun & He, Chenmin & Portugal-Pereira, Joana & Safonov, George & , 2021. "The crucial role of complementarity, transparency and adaptability for designing energy policies for sustainable development," Energy Policy, Elsevier, vol. 159(C).
    22. Jhon A. Pab n Le n & Jos O. Garc a Mendoza & Sofia Orjuela Abril, 2020. "Overview of Policies for the Generation from Renewable Energy Focused in Central Tower Concentrating Solar Power," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 545-552.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malagueta, Diego & Szklo, Alexandre & Soria, Rafael & Dutra, Ricardo & Schaeffer, Roberto & Moreira Cesar Borba, Bruno Soares, 2014. "Potential and impacts of Concentrated Solar Power (CSP) integration in the Brazilian electric power system," Renewable Energy, Elsevier, vol. 68(C), pages 223-235.
    2. Martín, Helena & de la Hoz, Jordi & Velasco, Guillermo & Castilla, Miguel & García de Vicuña, José Luís, 2015. "Promotion of concentrating solar thermal power (CSP) in Spain: Performance analysis of the period 1998–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1052-1068.
    3. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    4. Purohit, Ishan & Purohit, Pallav & Shekhar, Shashaank, 2013. "Evaluating the potential of concentrating solar power generation in Northwestern India," Energy Policy, Elsevier, vol. 62(C), pages 157-175.
    5. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    6. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    7. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    8. Jamel, M.S. & Abd Rahman, A. & Shamsuddin, A.H., 2013. "Advances in the integration of solar thermal energy with conventional and non-conventional power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 71-81.
    9. Goldemberg, José & Schaeffer, Roberto & Szklo, Alexandre & Lucchesi, Rodrigo, 2014. "Oil and natural gas prospects in South America: Can the petroleum industry pave the way for renewables in Brazil?," Energy Policy, Elsevier, vol. 64(C), pages 58-70.
    10. Sharma, Chandan & Sharma, Ashish K. & Mullick, Subhash C. & Kandpal, Tara C., 2015. "Assessment of solar thermal power generation potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 902-912.
    11. Portolan dos Santos, Ísis & Rüther, Ricardo, 2014. "Limitations in solar module azimuth and tilt angles in building integrated photovoltaics at low latitude tropical sites in Brazil," Renewable Energy, Elsevier, vol. 63(C), pages 116-124.
    12. Soria, Rafael & Portugal-Pereira, Joana & Szklo, Alexandre & Milani, Rodrigo & Schaeffer, Roberto, 2015. "Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil," Energy Policy, Elsevier, vol. 86(C), pages 57-72.
    13. Corral, Nicolás & Anrique, Nicolás & Fernandes, Dalila & Parrado, Cristóbal & Cáceres, Gustavo, 2012. "Power, placement and LEC evaluation to install CSP plants in northern Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6678-6685.
    14. Pavlović, Tomislav M. & Radonjić, Ivana S. & Milosavljević, Dragana D. & Pantić, Lana S., 2012. "A review of concentrating solar power plants in the world and their potential use in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3891-3902.
    15. Dan, Atasi & Barshilia, Harish C. & Chattopadhyay, Kamanio & Basu, Bikramjit, 2017. "Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1050-1077.
    16. Siva Reddy, V. & Kaushik, S.C. & Ranjan, K.R. & Tyagi, S.K., 2013. "State-of-the-art of solar thermal power plants—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 258-273.
    17. Lima, Francisco J.L. & Martins, Fernando R. & Pereira, Enio B. & Lorenz, Elke & Heinemann, Detlev, 2016. "Forecast for surface solar irradiance at the Brazilian Northeastern region using NWP model and artificial neural networks," Renewable Energy, Elsevier, vol. 87(P1), pages 807-818.
    18. Purohit, Ishan & Purohit, Pallav, 2010. "Techno-economic evaluation of concentrating solar power generation in India," Energy Policy, Elsevier, vol. 38(6), pages 3015-3029, June.
    19. Li, Yuqiang & Liao, Shengming & Rao, Zhenghua & Liu, Gang, 2014. "A dynamic assessment based feasibility study of concentrating solar power in China," Renewable Energy, Elsevier, vol. 69(C), pages 34-42.
    20. Janjai, S. & Laksanaboonsong, J. & Seesaard, T., 2011. "Potential application of concentrating solar power systems for the generation of electricity in Thailand," Applied Energy, Elsevier, vol. 88(12), pages 4960-4967.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:59:y:2013:i:c:p:198-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.